183 lines
5.6 KiB
ReStructuredText
Raw Normal View History

2012-10-17 11:12:04 +04:00
.. _hough_circle:
Hough Circle Transform
***********************
Goal
=====
In this tutorial you will learn how to:
* Use the OpenCV function :hough_circles:`HoughCircles <>` to detect circles in an image.
Theory
=======
Hough Circle Transform
------------------------
* The Hough Circle Transform works in a *roughly* analogous way to the Hough Line Transform explained in the previous tutorial.
* In the line detection case, a line was defined by two parameters :math:`(r, \theta)`. In the circle case, we need three parameters to define a circle:
.. math::
C : ( x_{center}, y_{center}, r )
where :math:`(x_{center}, y_{center})` define the center position (gree point) and :math:`r` is the radius, which allows us to completely define a circle, as it can be seen below:
.. image:: images/Hough_Circle_Tutorial_Theory_0.jpg
:alt: Result of detecting circles with Hough Transform
:align: center
* For sake of efficiency, OpenCV implements a detection method slightly trickier than the standard Hough Transform: *The Hough gradient method*. For more details, please check the book *Learning OpenCV* or your favorite Computer Vision bibliography
Code
======
#. **What does this program do?**
* Loads an image and blur it to reduce the noise
* Applies the *Hough Circle Transform* to the blurred image .
* Display the detected circle in a window.
.. |TutorialHoughCirclesSimpleDownload| replace:: here
.. _TutorialHoughCirclesSimpleDownload: http://code.opencv.org/projects/opencv/repository/revisions/master/raw/samples/cpp/houghlines.cpp
.. |TutorialHoughCirclesFancyDownload| replace:: here
.. _TutorialHoughCirclesFancyDownload: http://code.opencv.org/projects/opencv/repository/revisions/master/raw/samples/cpp/tutorial_code/ImgTrans/HoughCircle_Demo.cpp
#. The sample code that we will explain can be downloaded from |TutorialHoughCirclesSimpleDownload|_. A slightly fancier version (which shows both Hough standard and probabilistic with trackbars for changing the threshold values) can be found |TutorialHoughCirclesFancyDownload|_.
.. code-block:: cpp
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
using namespace cv;
/** @function main */
int main(int argc, char** argv)
{
Mat src, src_gray;
/// Read the image
src = imread( argv[1], 1 );
if( !src.data )
{ return -1; }
/// Convert it to gray
cvtColor( src, src_gray, CV_BGR2GRAY );
/// Reduce the noise so we avoid false circle detection
GaussianBlur( src_gray, src_gray, Size(9, 9), 2, 2 );
vector<Vec3f> circles;
/// Apply the Hough Transform to find the circles
HoughCircles( src_gray, circles, CV_HOUGH_GRADIENT, 1, src_gray.rows/8, 200, 100, 0, 0 );
/// Draw the circles detected
for( size_t i = 0; i < circles.size(); i++ )
{
Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
int radius = cvRound(circles[i][2]);
// circle center
circle( src, center, 3, Scalar(0,255,0), -1, 8, 0 );
// circle outline
circle( src, center, radius, Scalar(0,0,255), 3, 8, 0 );
}
/// Show your results
namedWindow( "Hough Circle Transform Demo", CV_WINDOW_AUTOSIZE );
imshow( "Hough Circle Transform Demo", src );
waitKey(0);
return 0;
}
Explanation
============
#. Load an image
.. code-block:: cpp
src = imread( argv[1], 1 );
if( !src.data )
{ return -1; }
#. Convert it to grayscale:
.. code-block:: cpp
cvtColor( src, src_gray, CV_BGR2GRAY );
#. Apply a Gaussian blur to reduce noise and avoid false circle detection:
.. code-block:: cpp
GaussianBlur( src_gray, src_gray, Size(9, 9), 2, 2 );
#. Proceed to apply Hough Circle Transform:
.. code-block:: cpp
vector<Vec3f> circles;
HoughCircles( src_gray, circles, CV_HOUGH_GRADIENT, 1, src_gray.rows/8, 200, 100, 0, 0 );
with the arguments:
* *src_gray*: Input image (grayscale)
* *circles*: A vector that stores sets of 3 values: :math:`x_{c}, y_{c}, r` for each detected circle.
* *CV_HOUGH_GRADIENT*: Define the detection method. Currently this is the only one available in OpenCV
* *dp = 1*: The inverse ratio of resolution
* *min_dist = src_gray.rows/8*: Minimum distance between detected centers
* *param_1 = 200*: Upper threshold for the internal Canny edge detector
* *param_2* = 100*: Threshold for center detection.
* *min_radius = 0*: Minimum radio to be detected. If unknown, put zero as default.
* *max_radius = 0*: Maximum radius to be detected. If unknown, put zero as default
#. Draw the detected circles:
.. code-block:: cpp
for( size_t i = 0; i < circles.size(); i++ )
{
Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
int radius = cvRound(circles[i][2]);
// circle center
circle( src, center, 3, Scalar(0,255,0), -1, 8, 0 );
// circle outline
circle( src, center, radius, Scalar(0,0,255), 3, 8, 0 );
}
You can see that we will draw the circle(s) on red and the center(s) with a small green dot
#. Display the detected circle(s):
.. code-block:: cpp
namedWindow( "Hough Circle Transform Demo", CV_WINDOW_AUTOSIZE );
imshow( "Hough Circle Transform Demo", src );
#. Wait for the user to exit the program
.. code-block:: cpp
waitKey(0);
Result
=======
The result of running the code above with a test image is shown below:
.. image:: images/Hough_Circle_Tutorial_Result.jpg
:alt: Result of detecting circles with Hough Transform
:align: center