opencv/modules/gpu/src/cascadeclassifier.cpp

795 lines
35 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other GpuMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or bpied warranties, including, but not limited to, the bpied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::gpu;
using namespace std;
#if !defined (HAVE_CUDA) || (defined(_MSC_VER) && _MSC_VER != 1500) || !defined(_MSC_VER)
cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU() { throw_nogpu(); }
cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU(const string&) { throw_nogpu(); }
cv::gpu::CascadeClassifier_GPU::~CascadeClassifier_GPU() { throw_nogpu(); }
bool cv::gpu::CascadeClassifier_GPU::empty() const { throw_nogpu(); return true; }
bool cv::gpu::CascadeClassifier_GPU::load(const string&) { throw_nogpu(); return true; }
Size cv::gpu::CascadeClassifier_GPU::getClassifierSize() const { throw_nogpu(); return Size(); }
int cv::gpu::CascadeClassifier_GPU::detectMultiScale( const GpuMat& , GpuMat& , double , int , Size) { throw_nogpu(); return 0; }
#if defined (HAVE_CUDA)
NCVStatus loadFromXML(const string&, HaarClassifierCascadeDescriptor&, vector<HaarStage64>&,
vector<HaarClassifierNode128>&, vector<HaarFeature64>&) { throw_nogpu(); return NCVStatus(); }
void groupRectangles(vector<NcvRect32u>&, int, double, vector<Ncv32u>*) { throw_nogpu(); }
#endif
#else
struct cv::gpu::CascadeClassifier_GPU::CascadeClassifierImpl
{
CascadeClassifierImpl(const string& filename) : lastAllocatedFrameSize(-1, -1)
{
ncvSetDebugOutputHandler(NCVDebugOutputHandler);
if (ncvStat != load(filename))
CV_Error(CV_GpuApiCallError, "Error in GPU cacade load");
}
NCVStatus process(const GpuMat& src, GpuMat& objects, float scaleStep, int minNeighbors, bool findLargestObject, bool visualizeInPlace, NcvSize32u ncvMinSize, /*out*/unsigned int& numDetections)
{
calculateMemReqsAndAllocate(src.size());
NCVMemPtr src_beg;
src_beg.ptr = (void*)src.ptr<Ncv8u>();
src_beg.memtype = NCVMemoryTypeDevice;
NCVMemSegment src_seg;
src_seg.begin = src_beg;
src_seg.size = src.step * src.rows;
NCVMatrixReuse<Ncv8u> d_src(src_seg, devProp.textureAlignment, src.cols, src.rows, src.step, true);
ncvAssertReturn(d_src.isMemReused(), NCV_ALLOCATOR_BAD_REUSE);
//NCVMatrixAlloc<Ncv8u> d_src(*gpuAllocator, src.cols, src.rows);
//ncvAssertReturn(d_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
//NCVMatrixAlloc<Ncv8u> h_src(*cpuAllocator, src.cols, src.rows);
//ncvAssertReturn(h_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
CV_Assert(objects.rows == 1);
NCVMemPtr objects_beg;
objects_beg.ptr = (void*)objects.ptr<NcvRect32u>();
objects_beg.memtype = NCVMemoryTypeDevice;
NCVMemSegment objects_seg;
objects_seg.begin = objects_beg;
objects_seg.size = objects.step * objects.rows;
NCVVectorReuse<NcvRect32u> d_rects(objects_seg, objects.cols);
ncvAssertReturn(d_rects.isMemReused(), NCV_ALLOCATOR_BAD_REUSE);
//NCVVectorAlloc<NcvRect32u> d_rects(*gpuAllocator, 100);
//ncvAssertReturn(d_rects.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
NcvSize32u roi;
roi.width = d_src.width();
roi.height = d_src.height();
Ncv32u flags = 0;
flags |= findLargestObject? NCVPipeObjDet_FindLargestObject : 0;
flags |= visualizeInPlace ? NCVPipeObjDet_VisualizeInPlace : 0;
ncvStat = ncvDetectObjectsMultiScale_device(
d_src, roi, d_rects, numDetections, haar, *h_haarStages,
*d_haarStages, *d_haarNodes, *d_haarFeatures,
ncvMinSize,
minNeighbors,
scaleStep, 1,
flags,
*gpuAllocator, *cpuAllocator, devProp, 0);
ncvAssertReturnNcvStat(ncvStat);
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);
return NCV_SUCCESS;
}
////
NcvSize32u getClassifierSize() const { return haar.ClassifierSize; }
cv::Size getClassifierCvSize() const { return cv::Size(haar.ClassifierSize.width, haar.ClassifierSize.height); }
private:
static void NCVDebugOutputHandler(const char* msg) { CV_Error(CV_GpuApiCallError, msg); }
NCVStatus load(const string& classifierFile)
{
int devId = cv::gpu::getDevice();
ncvAssertCUDAReturn(cudaGetDeviceProperties(&devProp, devId), NCV_CUDA_ERROR);
// Load the classifier from file (assuming its size is about 1 mb) using a simple allocator
gpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeDevice, devProp.textureAlignment);
cpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeHostPinned, devProp.textureAlignment);
ncvAssertPrintReturn(gpuCascadeAllocator->isInitialized(), "Error creating cascade GPU allocator", NCV_CUDA_ERROR);
ncvAssertPrintReturn(cpuCascadeAllocator->isInitialized(), "Error creating cascade CPU allocator", NCV_CUDA_ERROR);
Ncv32u haarNumStages, haarNumNodes, haarNumFeatures;
ncvStat = ncvHaarGetClassifierSize(classifierFile, haarNumStages, haarNumNodes, haarNumFeatures);
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error reading classifier size (check the file)", NCV_FILE_ERROR);
h_haarStages = new NCVVectorAlloc<HaarStage64>(*cpuCascadeAllocator, haarNumStages);
h_haarNodes = new NCVVectorAlloc<HaarClassifierNode128>(*cpuCascadeAllocator, haarNumNodes);
h_haarFeatures = new NCVVectorAlloc<HaarFeature64>(*cpuCascadeAllocator, haarNumFeatures);
ncvAssertPrintReturn(h_haarStages->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR);
ncvAssertPrintReturn(h_haarNodes->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR);
ncvAssertPrintReturn(h_haarFeatures->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR);
ncvStat = ncvHaarLoadFromFile_host(classifierFile, haar, *h_haarStages, *h_haarNodes, *h_haarFeatures);
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error loading classifier", NCV_FILE_ERROR);
d_haarStages = new NCVVectorAlloc<HaarStage64>(*gpuCascadeAllocator, haarNumStages);
d_haarNodes = new NCVVectorAlloc<HaarClassifierNode128>(*gpuCascadeAllocator, haarNumNodes);
d_haarFeatures = new NCVVectorAlloc<HaarFeature64>(*gpuCascadeAllocator, haarNumFeatures);
ncvAssertPrintReturn(d_haarStages->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR);
ncvAssertPrintReturn(d_haarNodes->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR);
ncvAssertPrintReturn(d_haarFeatures->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR);
ncvStat = h_haarStages->copySolid(*d_haarStages, 0);
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR);
ncvStat = h_haarNodes->copySolid(*d_haarNodes, 0);
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR);
ncvStat = h_haarFeatures->copySolid(*d_haarFeatures, 0);
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR);
return NCV_SUCCESS;
}
////
NCVStatus calculateMemReqsAndAllocate(const Size& frameSize)
{
if (lastAllocatedFrameSize == frameSize)
return NCV_SUCCESS;
// Calculate memory requirements and create real allocators
NCVMemStackAllocator gpuCounter(devProp.textureAlignment);
NCVMemStackAllocator cpuCounter(devProp.textureAlignment);
ncvAssertPrintReturn(gpuCounter.isInitialized(), "Error creating GPU memory counter", NCV_CUDA_ERROR);
ncvAssertPrintReturn(cpuCounter.isInitialized(), "Error creating CPU memory counter", NCV_CUDA_ERROR);
NCVMatrixAlloc<Ncv8u> d_src(gpuCounter, frameSize.width, frameSize.height);
NCVMatrixAlloc<Ncv8u> h_src(cpuCounter, frameSize.width, frameSize.height);
ncvAssertReturn(d_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
ncvAssertReturn(h_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
NCVVectorAlloc<NcvRect32u> d_rects(gpuCounter, 100);
ncvAssertReturn(d_rects.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
NcvSize32u roi;
roi.width = d_src.width();
roi.height = d_src.height();
Ncv32u numDetections;
ncvStat = ncvDetectObjectsMultiScale_device(d_src, roi, d_rects, numDetections, haar, *h_haarStages,
*d_haarStages, *d_haarNodes, *d_haarFeatures, haar.ClassifierSize, 4, 1.2f, 1, 0, gpuCounter, cpuCounter, devProp, 0);
ncvAssertReturnNcvStat(ncvStat);
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);
gpuAllocator = new NCVMemStackAllocator(NCVMemoryTypeDevice, gpuCounter.maxSize(), devProp.textureAlignment);
cpuAllocator = new NCVMemStackAllocator(NCVMemoryTypeHostPinned, cpuCounter.maxSize(), devProp.textureAlignment);
ncvAssertPrintReturn(gpuAllocator->isInitialized(), "Error creating GPU memory allocator", NCV_CUDA_ERROR);
ncvAssertPrintReturn(cpuAllocator->isInitialized(), "Error creating CPU memory allocator", NCV_CUDA_ERROR);
return NCV_SUCCESS;
}
////
cudaDeviceProp devProp;
NCVStatus ncvStat;
Ptr<NCVMemNativeAllocator> gpuCascadeAllocator;
Ptr<NCVMemNativeAllocator> cpuCascadeAllocator;
Ptr<NCVVectorAlloc<HaarStage64> > h_haarStages;
Ptr<NCVVectorAlloc<HaarClassifierNode128> > h_haarNodes;
Ptr<NCVVectorAlloc<HaarFeature64> > h_haarFeatures;
HaarClassifierCascadeDescriptor haar;
Ptr<NCVVectorAlloc<HaarStage64> > d_haarStages;
Ptr<NCVVectorAlloc<HaarClassifierNode128> > d_haarNodes;
Ptr<NCVVectorAlloc<HaarFeature64> > d_haarFeatures;
Size lastAllocatedFrameSize;
Ptr<NCVMemStackAllocator> gpuAllocator;
Ptr<NCVMemStackAllocator> cpuAllocator;
};
cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU() : findLargestObject(false), visualizeInPlace(false), impl(0) {}
cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU(const string& filename) : findLargestObject(false), visualizeInPlace(false), impl(0) { load(filename); }
cv::gpu::CascadeClassifier_GPU::~CascadeClassifier_GPU() { release(); }
bool cv::gpu::CascadeClassifier_GPU::empty() const { return impl == 0; }
void cv::gpu::CascadeClassifier_GPU::release() { if (impl) { delete impl; impl = 0; } }
bool cv::gpu::CascadeClassifier_GPU::load(const string& filename)
{
release();
impl = new CascadeClassifierImpl(filename);
return !this->empty();
}
Size cv::gpu::CascadeClassifier_GPU::getClassifierSize() const
{
return this->empty() ? Size() : impl->getClassifierCvSize();
}
int cv::gpu::CascadeClassifier_GPU::detectMultiScale( const GpuMat& image, GpuMat& objectsBuf, double scaleFactor, int minNeighbors, Size minSize)
{
CV_Assert( scaleFactor > 1 && image.depth() == CV_8U);
CV_Assert( !this->empty());
const int defaultObjSearchNum = 100;
if (objectsBuf.empty())
objectsBuf.create(1, defaultObjSearchNum, DataType<Rect>::type);
NcvSize32u ncvMinSize = impl->getClassifierSize();
if (ncvMinSize.width < (unsigned)minSize.width && ncvMinSize.height < (unsigned)minSize.height)
{
ncvMinSize.width = minSize.width;
ncvMinSize.height = minSize.height;
}
unsigned int numDetections;
NCVStatus ncvStat = impl->process(image, objectsBuf, (float)scaleFactor, minNeighbors, findLargestObject, visualizeInPlace, ncvMinSize, numDetections);
if (ncvStat != NCV_SUCCESS)
CV_Error(CV_GpuApiCallError, "Error in face detectioln");
return numDetections;
}
2011-01-21 09:00:19 +00:00
struct RectConvert
{
Rect operator()(const NcvRect32u& nr) const { return Rect(nr.x, nr.y, nr.width, nr.height); }
NcvRect32u operator()(const Rect& nr) const
{
NcvRect32u rect;
rect.x = nr.x;
rect.y = nr.y;
rect.width = nr.width;
rect.height = nr.height;
return rect;
}
};
void groupRectangles(std::vector<NcvRect32u> &hypotheses, int groupThreshold, double eps, std::vector<Ncv32u> *weights)
{
vector<Rect> rects(hypotheses.size());
std::transform(hypotheses.begin(), hypotheses.end(), rects.begin(), RectConvert());
if (weights)
{
2011-01-21 09:00:19 +00:00
vector<int> weights_int;
weights_int.assign(weights->begin(), weights->end());
cv::groupRectangles(rects, weights_int, groupThreshold, eps);
}
2011-01-21 09:00:19 +00:00
else
{
cv::groupRectangles(rects, groupThreshold, eps);
}
std::transform(rects.begin(), rects.end(), hypotheses.begin(), RectConvert());
hypotheses.resize(rects.size());
}
#if 1 /* loadFromXML implementation switch */
NCVStatus loadFromXML(const std::string &filename,
HaarClassifierCascadeDescriptor &haar,
std::vector<HaarStage64> &haarStages,
std::vector<HaarClassifierNode128> &haarClassifierNodes,
std::vector<HaarFeature64> &haarFeatures)
{
NCVStatus ncvStat;
haar.NumStages = 0;
haar.NumClassifierRootNodes = 0;
haar.NumClassifierTotalNodes = 0;
haar.NumFeatures = 0;
haar.ClassifierSize.width = 0;
haar.ClassifierSize.height = 0;
haar.bHasStumpsOnly = true;
haar.bNeedsTiltedII = false;
Ncv32u curMaxTreeDepth;
std::vector<char> xmlFileCont;
std::vector<HaarClassifierNode128> h_TmpClassifierNotRootNodes;
haarStages.resize(0);
haarClassifierNodes.resize(0);
haarFeatures.resize(0);
Ptr<CvHaarClassifierCascade> oldCascade = (CvHaarClassifierCascade*)cvLoad(filename.c_str(), 0, 0, 0);
if (oldCascade.empty())
return NCV_HAAR_XML_LOADING_EXCEPTION;
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
haar.ClassifierSize.width = oldCascade->orig_window_size.width;
haar.ClassifierSize.height = oldCascade->orig_window_size.height;
int stagesCound = oldCascade->count;
for(int s = 0; s < stagesCound; ++s) // by stages
{
HaarStage64 curStage;
curStage.setStartClassifierRootNodeOffset(haarClassifierNodes.size());
curStage.setStageThreshold(oldCascade->stage_classifier[s].threshold);
int treesCount = oldCascade->stage_classifier[s].count;
for(int t = 0; t < treesCount; ++t) // bytrees
{
Ncv32u nodeId = 0;
CvHaarClassifier* tree = &oldCascade->stage_classifier[s].classifier[t];
int nodesCount = tree->count;
for(int n = 0; n < nodesCount; ++n) //by features
{
CvHaarFeature* feature = &tree->haar_feature[n];
HaarClassifierNode128 curNode;
curNode.setThreshold(tree->threshold[n]);
HaarClassifierNodeDescriptor32 nodeLeft;
if ( tree->left[n] <= 0 )
{
Ncv32f leftVal = tree->alpha[-tree->left[n]];
ncvStat = nodeLeft.create(leftVal);
ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat);
}
else
{
Ncv32u leftNodeOffset = tree->left[n];
nodeLeft.create((Ncv32u)(h_TmpClassifierNotRootNodes.size() + leftNodeOffset - 1));
haar.bHasStumpsOnly = false;
}
curNode.setLeftNodeDesc(nodeLeft);
HaarClassifierNodeDescriptor32 nodeRight;
if ( tree->right[n] <= 0 )
{
Ncv32f rightVal = tree->alpha[-tree->right[n]];
ncvStat = nodeRight.create(rightVal);
ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat);
}
else
{
Ncv32u rightNodeOffset = tree->right[n];
nodeRight.create((Ncv32u)(h_TmpClassifierNotRootNodes.size() + rightNodeOffset - 1));
haar.bHasStumpsOnly = false;
}
curNode.setRightNodeDesc(nodeRight);
Ncv32u tiltedVal = feature->tilted;
haar.bNeedsTiltedII = (tiltedVal != 0);
Ncv32u featureId = 0;
for(int l = 0; l < CV_HAAR_FEATURE_MAX; ++l) //by rects
{
Ncv32u rectX = feature->rect[l].r.x;
Ncv32u rectY = feature->rect[l].r.y;
Ncv32u rectWidth = feature->rect[l].r.width;
Ncv32u rectHeight = feature->rect[l].r.height;
Ncv32f rectWeight = feature->rect[l].weight;
if (rectWeight == 0/* && rectX == 0 &&rectY == 0 && rectWidth == 0 && rectHeight == 0*/)
break;
HaarFeature64 curFeature;
ncvStat = curFeature.setRect(rectX, rectY, rectWidth, rectHeight, haar.ClassifierSize.width, haar.ClassifierSize.height);
curFeature.setWeight(rectWeight);
ncvAssertReturn(NCV_SUCCESS == ncvStat, ncvStat);
haarFeatures.push_back(curFeature);
featureId++;
}
HaarFeatureDescriptor32 tmpFeatureDesc;
ncvStat = tmpFeatureDesc.create(haar.bNeedsTiltedII, featureId, haarFeatures.size() - featureId);
ncvAssertReturn(NCV_SUCCESS == ncvStat, ncvStat);
curNode.setFeatureDesc(tmpFeatureDesc);
if (!nodeId)
{
//root node
haarClassifierNodes.push_back(curNode);
curMaxTreeDepth = 1;
}
else
{
//other node
h_TmpClassifierNotRootNodes.push_back(curNode);
curMaxTreeDepth++;
}
nodeId++;
}
}
curStage.setNumClassifierRootNodes(treesCount);
haarStages.push_back(curStage);
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//fill in cascade stats
haar.NumStages = haarStages.size();
haar.NumClassifierRootNodes = haarClassifierNodes.size();
haar.NumClassifierTotalNodes = haar.NumClassifierRootNodes + h_TmpClassifierNotRootNodes.size();
haar.NumFeatures = haarFeatures.size();
//merge root and leaf nodes in one classifiers array
Ncv32u offsetRoot = haarClassifierNodes.size();
for (Ncv32u i=0; i<haarClassifierNodes.size(); i++)
{
HaarClassifierNodeDescriptor32 nodeLeft = haarClassifierNodes[i].getLeftNodeDesc();
if (!nodeLeft.isLeaf())
{
Ncv32u newOffset = nodeLeft.getNextNodeOffset() + offsetRoot;
nodeLeft.create(newOffset);
}
haarClassifierNodes[i].setLeftNodeDesc(nodeLeft);
HaarClassifierNodeDescriptor32 nodeRight = haarClassifierNodes[i].getRightNodeDesc();
if (!nodeRight.isLeaf())
{
Ncv32u newOffset = nodeRight.getNextNodeOffset() + offsetRoot;
nodeRight.create(newOffset);
}
haarClassifierNodes[i].setRightNodeDesc(nodeRight);
}
for (Ncv32u i=0; i<h_TmpClassifierNotRootNodes.size(); i++)
{
HaarClassifierNodeDescriptor32 nodeLeft = h_TmpClassifierNotRootNodes[i].getLeftNodeDesc();
if (!nodeLeft.isLeaf())
{
Ncv32u newOffset = nodeLeft.getNextNodeOffset() + offsetRoot;
nodeLeft.create(newOffset);
}
h_TmpClassifierNotRootNodes[i].setLeftNodeDesc(nodeLeft);
HaarClassifierNodeDescriptor32 nodeRight = h_TmpClassifierNotRootNodes[i].getRightNodeDesc();
if (!nodeRight.isLeaf())
{
Ncv32u newOffset = nodeRight.getNextNodeOffset() + offsetRoot;
nodeRight.create(newOffset);
}
h_TmpClassifierNotRootNodes[i].setRightNodeDesc(nodeRight);
haarClassifierNodes.push_back(h_TmpClassifierNotRootNodes[i]);
}
return NCV_SUCCESS;
}
////
#else /* loadFromXML implementation switch */
#include "e:/devNPP-OpenCV/src/external/_rapidxml-1.13/rapidxml.hpp"
NCVStatus loadFromXML(const std::string &filename,
HaarClassifierCascadeDescriptor &haar,
std::vector<HaarStage64> &haarStages,
std::vector<HaarClassifierNode128> &haarClassifierNodes,
std::vector<HaarFeature64> &haarFeatures)
{
NCVStatus ncvStat;
haar.NumStages = 0;
haar.NumClassifierRootNodes = 0;
haar.NumClassifierTotalNodes = 0;
haar.NumFeatures = 0;
haar.ClassifierSize.width = 0;
haar.ClassifierSize.height = 0;
haar.bNeedsTiltedII = false;
haar.bHasStumpsOnly = false;
FILE *fp;
fopen_s(&fp, filename.c_str(), "r");
ncvAssertReturn(fp != NULL, NCV_FILE_ERROR);
//get file size
fseek(fp, 0, SEEK_END);
Ncv32u xmlSize = ftell(fp);
fseek(fp, 0, SEEK_SET);
//load file to vector
std::vector<char> xmlFileCont;
xmlFileCont.resize(xmlSize+1);
memset(&xmlFileCont[0], 0, xmlSize+1);
fread_s(&xmlFileCont[0], xmlSize, 1, xmlSize, fp);
fclose(fp);
haar.bHasStumpsOnly = true;
haar.bNeedsTiltedII = false;
Ncv32u curMaxTreeDepth;
std::vector<HaarClassifierNode128> h_TmpClassifierNotRootNodes;
haarStages.resize(0);
haarClassifierNodes.resize(0);
haarFeatures.resize(0);
//XML loading and OpenCV XML classifier syntax verification
try
{
rapidxml::xml_document<> doc;
doc.parse<0>(&xmlFileCont[0]);
//opencv_storage
rapidxml::xml_node<> *parserGlobal = doc.first_node();
ncvAssertReturn(!strcmp(parserGlobal->name(), "opencv_storage"), NCV_HAAR_XML_LOADING_EXCEPTION);
//classifier type
parserGlobal = parserGlobal->first_node();
ncvAssertReturn(parserGlobal, NCV_HAAR_XML_LOADING_EXCEPTION);
rapidxml::xml_attribute<> *attr = parserGlobal->first_attribute("type_id");
ncvAssertReturn(!strcmp(attr->value(), "opencv-haar-classifier"), NCV_HAAR_XML_LOADING_EXCEPTION);
//classifier size
parserGlobal = parserGlobal->first_node("size");
ncvAssertReturn(parserGlobal, NCV_HAAR_XML_LOADING_EXCEPTION);
sscanf_s(parserGlobal->value(), "%d %d", &(haar.ClassifierSize.width), &(haar.ClassifierSize.height));
//parse stages
parserGlobal = parserGlobal->next_sibling("stages");
ncvAssertReturn(parserGlobal, NCV_HAAR_XML_LOADING_EXCEPTION);
parserGlobal = parserGlobal->first_node("_");
ncvAssertReturn(parserGlobal, NCV_HAAR_XML_LOADING_EXCEPTION);
while (parserGlobal)
{
HaarStage64 curStage;
curStage.setStartClassifierRootNodeOffset(haarClassifierNodes.size());
Ncv32u tmpNumClassifierRootNodes = 0;
rapidxml::xml_node<> *parserStageThreshold = parserGlobal->first_node("stage_threshold");
ncvAssertReturn(parserStageThreshold, NCV_HAAR_XML_LOADING_EXCEPTION);
Ncv32f tmpStageThreshold;
sscanf_s(parserStageThreshold->value(), "%f", &tmpStageThreshold);
curStage.setStageThreshold(tmpStageThreshold);
//parse trees
rapidxml::xml_node<> *parserTree;
parserTree = parserGlobal->first_node("trees");
ncvAssertReturn(parserTree, NCV_HAAR_XML_LOADING_EXCEPTION);
parserTree = parserTree->first_node("_");
ncvAssertReturn(parserTree, NCV_HAAR_XML_LOADING_EXCEPTION);
while (parserTree)
{
rapidxml::xml_node<> *parserNode;
parserNode = parserTree->first_node("_");
ncvAssertReturn(parserNode, NCV_HAAR_XML_LOADING_EXCEPTION);
Ncv32u nodeId = 0;
while (parserNode)
{
HaarClassifierNode128 curNode;
rapidxml::xml_node<> *parserNodeThreshold = parserNode->first_node("threshold");
ncvAssertReturn(parserNodeThreshold, NCV_HAAR_XML_LOADING_EXCEPTION);
Ncv32f tmpThreshold;
sscanf_s(parserNodeThreshold->value(), "%f", &tmpThreshold);
curNode.setThreshold(tmpThreshold);
rapidxml::xml_node<> *parserNodeLeft = parserNode->first_node("left_val");
HaarClassifierNodeDescriptor32 nodeLeft;
if (parserNodeLeft)
{
Ncv32f leftVal;
sscanf_s(parserNodeLeft->value(), "%f", &leftVal);
ncvStat = nodeLeft.create(leftVal);
ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat);
}
else
{
parserNodeLeft = parserNode->first_node("left_node");
ncvAssertReturn(parserNodeLeft, NCV_HAAR_XML_LOADING_EXCEPTION);
Ncv32u leftNodeOffset;
sscanf_s(parserNodeLeft->value(), "%d", &leftNodeOffset);
nodeLeft.create(h_TmpClassifierNotRootNodes.size() + leftNodeOffset - 1);
haar.bHasStumpsOnly = false;
}
curNode.setLeftNodeDesc(nodeLeft);
rapidxml::xml_node<> *parserNodeRight = parserNode->first_node("right_val");
HaarClassifierNodeDescriptor32 nodeRight;
if (parserNodeRight)
{
Ncv32f rightVal;
sscanf_s(parserNodeRight->value(), "%f", &rightVal);
ncvStat = nodeRight.create(rightVal);
ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat);
}
else
{
parserNodeRight = parserNode->first_node("right_node");
ncvAssertReturn(parserNodeRight, NCV_HAAR_XML_LOADING_EXCEPTION);
Ncv32u rightNodeOffset;
sscanf_s(parserNodeRight->value(), "%d", &rightNodeOffset);
nodeRight.create(h_TmpClassifierNotRootNodes.size() + rightNodeOffset - 1);
haar.bHasStumpsOnly = false;
}
curNode.setRightNodeDesc(nodeRight);
rapidxml::xml_node<> *parserNodeFeatures = parserNode->first_node("feature");
ncvAssertReturn(parserNodeFeatures, NCV_HAAR_XML_LOADING_EXCEPTION);
rapidxml::xml_node<> *parserNodeFeaturesTilted = parserNodeFeatures->first_node("tilted");
ncvAssertReturn(parserNodeFeaturesTilted, NCV_HAAR_XML_LOADING_EXCEPTION);
Ncv32u tiltedVal;
sscanf_s(parserNodeFeaturesTilted->value(), "%d", &tiltedVal);
haar.bNeedsTiltedII = (tiltedVal != 0);
rapidxml::xml_node<> *parserNodeFeaturesRects = parserNodeFeatures->first_node("rects");
ncvAssertReturn(parserNodeFeaturesRects, NCV_HAAR_XML_LOADING_EXCEPTION);
parserNodeFeaturesRects = parserNodeFeaturesRects->first_node("_");
ncvAssertReturn(parserNodeFeaturesRects, NCV_HAAR_XML_LOADING_EXCEPTION);
Ncv32u featureId = 0;
while (parserNodeFeaturesRects)
{
Ncv32u rectX, rectY, rectWidth, rectHeight;
Ncv32f rectWeight;
sscanf_s(parserNodeFeaturesRects->value(), "%d %d %d %d %f", &rectX, &rectY, &rectWidth, &rectHeight, &rectWeight);
HaarFeature64 curFeature;
ncvStat = curFeature.setRect(rectX, rectY, rectWidth, rectHeight, haar.ClassifierSize.width, haar.ClassifierSize.height);
curFeature.setWeight(rectWeight);
ncvAssertReturn(NCV_SUCCESS == ncvStat, ncvStat);
haarFeatures.push_back(curFeature);
parserNodeFeaturesRects = parserNodeFeaturesRects->next_sibling("_");
featureId++;
}
HaarFeatureDescriptor32 tmpFeatureDesc;
ncvStat = tmpFeatureDesc.create(haar.bNeedsTiltedII, featureId, haarFeatures.size() - featureId);
ncvAssertReturn(NCV_SUCCESS == ncvStat, ncvStat);
curNode.setFeatureDesc(tmpFeatureDesc);
if (!nodeId)
{
//root node
haarClassifierNodes.push_back(curNode);
curMaxTreeDepth = 1;
}
else
{
//other node
h_TmpClassifierNotRootNodes.push_back(curNode);
curMaxTreeDepth++;
}
parserNode = parserNode->next_sibling("_");
nodeId++;
}
parserTree = parserTree->next_sibling("_");
tmpNumClassifierRootNodes++;
}
curStage.setNumClassifierRootNodes(tmpNumClassifierRootNodes);
haarStages.push_back(curStage);
parserGlobal = parserGlobal->next_sibling("_");
}
}
catch (...)
{
return NCV_HAAR_XML_LOADING_EXCEPTION;
}
//fill in cascade stats
haar.NumStages = haarStages.size();
haar.NumClassifierRootNodes = haarClassifierNodes.size();
haar.NumClassifierTotalNodes = haar.NumClassifierRootNodes + h_TmpClassifierNotRootNodes.size();
haar.NumFeatures = haarFeatures.size();
//merge root and leaf nodes in one classifiers array
Ncv32u offsetRoot = haarClassifierNodes.size();
for (Ncv32u i=0; i<haarClassifierNodes.size(); i++)
{
HaarClassifierNodeDescriptor32 nodeLeft = haarClassifierNodes[i].getLeftNodeDesc();
if (!nodeLeft.isLeaf())
{
Ncv32u newOffset = nodeLeft.getNextNodeOffset() + offsetRoot;
nodeLeft.create(newOffset);
}
haarClassifierNodes[i].setLeftNodeDesc(nodeLeft);
HaarClassifierNodeDescriptor32 nodeRight = haarClassifierNodes[i].getRightNodeDesc();
if (!nodeRight.isLeaf())
{
Ncv32u newOffset = nodeRight.getNextNodeOffset() + offsetRoot;
nodeRight.create(newOffset);
}
haarClassifierNodes[i].setRightNodeDesc(nodeRight);
}
for (Ncv32u i=0; i<h_TmpClassifierNotRootNodes.size(); i++)
{
HaarClassifierNodeDescriptor32 nodeLeft = h_TmpClassifierNotRootNodes[i].getLeftNodeDesc();
if (!nodeLeft.isLeaf())
{
Ncv32u newOffset = nodeLeft.getNextNodeOffset() + offsetRoot;
nodeLeft.create(newOffset);
}
h_TmpClassifierNotRootNodes[i].setLeftNodeDesc(nodeLeft);
HaarClassifierNodeDescriptor32 nodeRight = h_TmpClassifierNotRootNodes[i].getRightNodeDesc();
if (!nodeRight.isLeaf())
{
Ncv32u newOffset = nodeRight.getNextNodeOffset() + offsetRoot;
nodeRight.create(newOffset);
}
h_TmpClassifierNotRootNodes[i].setRightNodeDesc(nodeRight);
haarClassifierNodes.push_back(h_TmpClassifierNotRootNodes[i]);
}
return NCV_SUCCESS;
}
#endif /* loadFromXML implementation switch */
#endif /* HAVE_CUDA */