2010-07-16 12:54:53 +00:00
|
|
|
/* dlaed6.f -- translated by f2c (version 20061008).
|
|
|
|
You must link the resulting object file with libf2c:
|
|
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
|
|
-- in that order, at the end of the command line, as in
|
|
|
|
cc *.o -lf2c -lm
|
|
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
|
|
*/
|
|
|
|
|
2010-05-11 17:44:00 +00:00
|
|
|
#include "clapack.h"
|
|
|
|
|
2010-07-16 12:54:53 +00:00
|
|
|
|
2010-05-11 17:44:00 +00:00
|
|
|
/* Subroutine */ int dlaed6_(integer *kniter, logical *orgati, doublereal *
|
|
|
|
rho, doublereal *d__, doublereal *z__, doublereal *finit, doublereal *
|
|
|
|
tau, integer *info)
|
|
|
|
{
|
|
|
|
/* System generated locals */
|
|
|
|
integer i__1;
|
|
|
|
doublereal d__1, d__2, d__3, d__4;
|
|
|
|
|
|
|
|
/* Builtin functions */
|
|
|
|
double sqrt(doublereal), log(doublereal), pow_di(doublereal *, integer *);
|
|
|
|
|
|
|
|
/* Local variables */
|
|
|
|
doublereal a, b, c__, f;
|
|
|
|
integer i__;
|
|
|
|
doublereal fc, df, ddf, lbd, eta, ubd, eps, base;
|
|
|
|
integer iter;
|
|
|
|
doublereal temp, temp1, temp2, temp3, temp4;
|
|
|
|
logical scale;
|
|
|
|
integer niter;
|
|
|
|
doublereal small1, small2, sminv1, sminv2;
|
|
|
|
extern doublereal dlamch_(char *);
|
|
|
|
doublereal dscale[3], sclfac, zscale[3], erretm, sclinv;
|
|
|
|
|
|
|
|
|
2010-07-16 12:54:53 +00:00
|
|
|
/* -- LAPACK routine (version 3.2) -- */
|
2010-05-11 17:44:00 +00:00
|
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
|
|
/* February 2007 */
|
|
|
|
|
|
|
|
/* .. Scalar Arguments .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Array Arguments .. */
|
|
|
|
/* .. */
|
|
|
|
|
|
|
|
/* Purpose */
|
|
|
|
/* ======= */
|
|
|
|
|
|
|
|
/* DLAED6 computes the positive or negative root (closest to the origin) */
|
|
|
|
/* of */
|
|
|
|
/* z(1) z(2) z(3) */
|
|
|
|
/* f(x) = rho + --------- + ---------- + --------- */
|
|
|
|
/* d(1)-x d(2)-x d(3)-x */
|
|
|
|
|
|
|
|
/* It is assumed that */
|
|
|
|
|
|
|
|
/* if ORGATI = .true. the root is between d(2) and d(3); */
|
|
|
|
/* otherwise it is between d(1) and d(2) */
|
|
|
|
|
|
|
|
/* This routine will be called by DLAED4 when necessary. In most cases, */
|
|
|
|
/* the root sought is the smallest in magnitude, though it might not be */
|
|
|
|
/* in some extremely rare situations. */
|
|
|
|
|
|
|
|
/* Arguments */
|
|
|
|
/* ========= */
|
|
|
|
|
|
|
|
/* KNITER (input) INTEGER */
|
|
|
|
/* Refer to DLAED4 for its significance. */
|
|
|
|
|
|
|
|
/* ORGATI (input) LOGICAL */
|
|
|
|
/* If ORGATI is true, the needed root is between d(2) and */
|
|
|
|
/* d(3); otherwise it is between d(1) and d(2). See */
|
|
|
|
/* DLAED4 for further details. */
|
|
|
|
|
|
|
|
/* RHO (input) DOUBLE PRECISION */
|
|
|
|
/* Refer to the equation f(x) above. */
|
|
|
|
|
|
|
|
/* D (input) DOUBLE PRECISION array, dimension (3) */
|
|
|
|
/* D satisfies d(1) < d(2) < d(3). */
|
|
|
|
|
|
|
|
/* Z (input) DOUBLE PRECISION array, dimension (3) */
|
|
|
|
/* Each of the elements in z must be positive. */
|
|
|
|
|
|
|
|
/* FINIT (input) DOUBLE PRECISION */
|
|
|
|
/* The value of f at 0. It is more accurate than the one */
|
|
|
|
/* evaluated inside this routine (if someone wants to do */
|
|
|
|
/* so). */
|
|
|
|
|
|
|
|
/* TAU (output) DOUBLE PRECISION */
|
|
|
|
/* The root of the equation f(x). */
|
|
|
|
|
|
|
|
/* INFO (output) INTEGER */
|
|
|
|
/* = 0: successful exit */
|
|
|
|
/* > 0: if INFO = 1, failure to converge */
|
|
|
|
|
|
|
|
/* Further Details */
|
|
|
|
/* =============== */
|
|
|
|
|
|
|
|
/* 30/06/99: Based on contributions by */
|
|
|
|
/* Ren-Cang Li, Computer Science Division, University of California */
|
|
|
|
/* at Berkeley, USA */
|
|
|
|
|
|
|
|
/* 10/02/03: This version has a few statements commented out for thread */
|
|
|
|
/* safety (machine parameters are computed on each entry). SJH. */
|
|
|
|
|
|
|
|
/* 05/10/06: Modified from a new version of Ren-Cang Li, use */
|
|
|
|
/* Gragg-Thornton-Warner cubic convergent scheme for better stability. */
|
|
|
|
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
|
|
/* .. Parameters .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. External Functions .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Local Arrays .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Local Scalars .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Intrinsic Functions .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Executable Statements .. */
|
|
|
|
|
|
|
|
/* Parameter adjustments */
|
|
|
|
--z__;
|
|
|
|
--d__;
|
|
|
|
|
|
|
|
/* Function Body */
|
|
|
|
*info = 0;
|
|
|
|
|
|
|
|
if (*orgati) {
|
|
|
|
lbd = d__[2];
|
|
|
|
ubd = d__[3];
|
|
|
|
} else {
|
|
|
|
lbd = d__[1];
|
|
|
|
ubd = d__[2];
|
|
|
|
}
|
|
|
|
if (*finit < 0.) {
|
|
|
|
lbd = 0.;
|
|
|
|
} else {
|
|
|
|
ubd = 0.;
|
|
|
|
}
|
|
|
|
|
|
|
|
niter = 1;
|
|
|
|
*tau = 0.;
|
|
|
|
if (*kniter == 2) {
|
|
|
|
if (*orgati) {
|
|
|
|
temp = (d__[3] - d__[2]) / 2.;
|
|
|
|
c__ = *rho + z__[1] / (d__[1] - d__[2] - temp);
|
|
|
|
a = c__ * (d__[2] + d__[3]) + z__[2] + z__[3];
|
|
|
|
b = c__ * d__[2] * d__[3] + z__[2] * d__[3] + z__[3] * d__[2];
|
|
|
|
} else {
|
|
|
|
temp = (d__[1] - d__[2]) / 2.;
|
|
|
|
c__ = *rho + z__[3] / (d__[3] - d__[2] - temp);
|
|
|
|
a = c__ * (d__[1] + d__[2]) + z__[1] + z__[2];
|
|
|
|
b = c__ * d__[1] * d__[2] + z__[1] * d__[2] + z__[2] * d__[1];
|
|
|
|
}
|
|
|
|
/* Computing MAX */
|
|
|
|
d__1 = abs(a), d__2 = abs(b), d__1 = max(d__1,d__2), d__2 = abs(c__);
|
|
|
|
temp = max(d__1,d__2);
|
|
|
|
a /= temp;
|
|
|
|
b /= temp;
|
|
|
|
c__ /= temp;
|
|
|
|
if (c__ == 0.) {
|
|
|
|
*tau = b / a;
|
|
|
|
} else if (a <= 0.) {
|
|
|
|
*tau = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
|
|
|
|
c__ * 2.);
|
|
|
|
} else {
|
|
|
|
*tau = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1))
|
|
|
|
));
|
|
|
|
}
|
|
|
|
if (*tau < lbd || *tau > ubd) {
|
|
|
|
*tau = (lbd + ubd) / 2.;
|
|
|
|
}
|
|
|
|
if (d__[1] == *tau || d__[2] == *tau || d__[3] == *tau) {
|
|
|
|
*tau = 0.;
|
|
|
|
} else {
|
|
|
|
temp = *finit + *tau * z__[1] / (d__[1] * (d__[1] - *tau)) + *tau
|
|
|
|
* z__[2] / (d__[2] * (d__[2] - *tau)) + *tau * z__[3] / (
|
|
|
|
d__[3] * (d__[3] - *tau));
|
|
|
|
if (temp <= 0.) {
|
|
|
|
lbd = *tau;
|
|
|
|
} else {
|
|
|
|
ubd = *tau;
|
|
|
|
}
|
|
|
|
if (abs(*finit) <= abs(temp)) {
|
|
|
|
*tau = 0.;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* get machine parameters for possible scaling to avoid overflow */
|
|
|
|
|
|
|
|
/* modified by Sven: parameters SMALL1, SMINV1, SMALL2, */
|
|
|
|
/* SMINV2, EPS are not SAVEd anymore between one call to the */
|
|
|
|
/* others but recomputed at each call */
|
|
|
|
|
|
|
|
eps = dlamch_("Epsilon");
|
|
|
|
base = dlamch_("Base");
|
|
|
|
i__1 = (integer) (log(dlamch_("SafMin")) / log(base) / 3.);
|
|
|
|
small1 = pow_di(&base, &i__1);
|
|
|
|
sminv1 = 1. / small1;
|
|
|
|
small2 = small1 * small1;
|
|
|
|
sminv2 = sminv1 * sminv1;
|
|
|
|
|
|
|
|
/* Determine if scaling of inputs necessary to avoid overflow */
|
|
|
|
/* when computing 1/TEMP**3 */
|
|
|
|
|
|
|
|
if (*orgati) {
|
|
|
|
/* Computing MIN */
|
|
|
|
d__3 = (d__1 = d__[2] - *tau, abs(d__1)), d__4 = (d__2 = d__[3] - *
|
|
|
|
tau, abs(d__2));
|
|
|
|
temp = min(d__3,d__4);
|
|
|
|
} else {
|
|
|
|
/* Computing MIN */
|
|
|
|
d__3 = (d__1 = d__[1] - *tau, abs(d__1)), d__4 = (d__2 = d__[2] - *
|
|
|
|
tau, abs(d__2));
|
|
|
|
temp = min(d__3,d__4);
|
|
|
|
}
|
|
|
|
scale = FALSE_;
|
|
|
|
if (temp <= small1) {
|
|
|
|
scale = TRUE_;
|
|
|
|
if (temp <= small2) {
|
|
|
|
|
|
|
|
/* Scale up by power of radix nearest 1/SAFMIN**(2/3) */
|
|
|
|
|
|
|
|
sclfac = sminv2;
|
|
|
|
sclinv = small2;
|
|
|
|
} else {
|
|
|
|
|
|
|
|
/* Scale up by power of radix nearest 1/SAFMIN**(1/3) */
|
|
|
|
|
|
|
|
sclfac = sminv1;
|
|
|
|
sclinv = small1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Scaling up safe because D, Z, TAU scaled elsewhere to be O(1) */
|
|
|
|
|
|
|
|
for (i__ = 1; i__ <= 3; ++i__) {
|
|
|
|
dscale[i__ - 1] = d__[i__] * sclfac;
|
|
|
|
zscale[i__ - 1] = z__[i__] * sclfac;
|
|
|
|
/* L10: */
|
|
|
|
}
|
|
|
|
*tau *= sclfac;
|
|
|
|
lbd *= sclfac;
|
|
|
|
ubd *= sclfac;
|
|
|
|
} else {
|
|
|
|
|
|
|
|
/* Copy D and Z to DSCALE and ZSCALE */
|
|
|
|
|
|
|
|
for (i__ = 1; i__ <= 3; ++i__) {
|
|
|
|
dscale[i__ - 1] = d__[i__];
|
|
|
|
zscale[i__ - 1] = z__[i__];
|
|
|
|
/* L20: */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fc = 0.;
|
|
|
|
df = 0.;
|
|
|
|
ddf = 0.;
|
|
|
|
for (i__ = 1; i__ <= 3; ++i__) {
|
|
|
|
temp = 1. / (dscale[i__ - 1] - *tau);
|
|
|
|
temp1 = zscale[i__ - 1] * temp;
|
|
|
|
temp2 = temp1 * temp;
|
|
|
|
temp3 = temp2 * temp;
|
|
|
|
fc += temp1 / dscale[i__ - 1];
|
|
|
|
df += temp2;
|
|
|
|
ddf += temp3;
|
|
|
|
/* L30: */
|
|
|
|
}
|
|
|
|
f = *finit + *tau * fc;
|
|
|
|
|
|
|
|
if (abs(f) <= 0.) {
|
|
|
|
goto L60;
|
|
|
|
}
|
|
|
|
if (f <= 0.) {
|
|
|
|
lbd = *tau;
|
|
|
|
} else {
|
|
|
|
ubd = *tau;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Iteration begins -- Use Gragg-Thornton-Warner cubic convergent */
|
|
|
|
/* scheme */
|
|
|
|
|
|
|
|
/* It is not hard to see that */
|
|
|
|
|
|
|
|
/* 1) Iterations will go up monotonically */
|
|
|
|
/* if FINIT < 0; */
|
|
|
|
|
|
|
|
/* 2) Iterations will go down monotonically */
|
|
|
|
/* if FINIT > 0. */
|
|
|
|
|
|
|
|
iter = niter + 1;
|
|
|
|
|
|
|
|
for (niter = iter; niter <= 40; ++niter) {
|
|
|
|
|
|
|
|
if (*orgati) {
|
|
|
|
temp1 = dscale[1] - *tau;
|
|
|
|
temp2 = dscale[2] - *tau;
|
|
|
|
} else {
|
|
|
|
temp1 = dscale[0] - *tau;
|
|
|
|
temp2 = dscale[1] - *tau;
|
|
|
|
}
|
|
|
|
a = (temp1 + temp2) * f - temp1 * temp2 * df;
|
|
|
|
b = temp1 * temp2 * f;
|
|
|
|
c__ = f - (temp1 + temp2) * df + temp1 * temp2 * ddf;
|
|
|
|
/* Computing MAX */
|
|
|
|
d__1 = abs(a), d__2 = abs(b), d__1 = max(d__1,d__2), d__2 = abs(c__);
|
|
|
|
temp = max(d__1,d__2);
|
|
|
|
a /= temp;
|
|
|
|
b /= temp;
|
|
|
|
c__ /= temp;
|
|
|
|
if (c__ == 0.) {
|
|
|
|
eta = b / a;
|
|
|
|
} else if (a <= 0.) {
|
|
|
|
eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (c__
|
|
|
|
* 2.);
|
|
|
|
} else {
|
|
|
|
eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))
|
|
|
|
);
|
|
|
|
}
|
|
|
|
if (f * eta >= 0.) {
|
|
|
|
eta = -f / df;
|
|
|
|
}
|
|
|
|
|
|
|
|
*tau += eta;
|
|
|
|
if (*tau < lbd || *tau > ubd) {
|
|
|
|
*tau = (lbd + ubd) / 2.;
|
|
|
|
}
|
|
|
|
|
|
|
|
fc = 0.;
|
|
|
|
erretm = 0.;
|
|
|
|
df = 0.;
|
|
|
|
ddf = 0.;
|
|
|
|
for (i__ = 1; i__ <= 3; ++i__) {
|
|
|
|
temp = 1. / (dscale[i__ - 1] - *tau);
|
|
|
|
temp1 = zscale[i__ - 1] * temp;
|
|
|
|
temp2 = temp1 * temp;
|
|
|
|
temp3 = temp2 * temp;
|
|
|
|
temp4 = temp1 / dscale[i__ - 1];
|
|
|
|
fc += temp4;
|
|
|
|
erretm += abs(temp4);
|
|
|
|
df += temp2;
|
|
|
|
ddf += temp3;
|
|
|
|
/* L40: */
|
|
|
|
}
|
|
|
|
f = *finit + *tau * fc;
|
|
|
|
erretm = (abs(*finit) + abs(*tau) * erretm) * 8. + abs(*tau) * df;
|
|
|
|
if (abs(f) <= eps * erretm) {
|
|
|
|
goto L60;
|
|
|
|
}
|
|
|
|
if (f <= 0.) {
|
|
|
|
lbd = *tau;
|
|
|
|
} else {
|
|
|
|
ubd = *tau;
|
|
|
|
}
|
|
|
|
/* L50: */
|
|
|
|
}
|
|
|
|
*info = 1;
|
|
|
|
L60:
|
|
|
|
|
|
|
|
/* Undo scaling */
|
|
|
|
|
|
|
|
if (scale) {
|
|
|
|
*tau *= sclinv;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* End of DLAED6 */
|
|
|
|
|
|
|
|
} /* dlaed6_ */
|