676 lines
25 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2014, Itseez Inc, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_ML_HPP__
#define __OPENCV_ML_HPP__
#ifdef __cplusplus
# include "opencv2/core.hpp"
#endif
#ifdef __cplusplus
#include <float.h>
#include <map>
#include <iostream>
namespace cv
{
namespace ml
{
/* Variable type */
enum
{
VAR_NUMERICAL =0,
VAR_ORDERED =0,
VAR_CATEGORICAL =1
};
enum
{
TEST_ERROR = 0,
TRAIN_ERROR = 1
};
enum
{
ROW_SAMPLE = 0,
COL_SAMPLE = 1
};
class CV_EXPORTS_W_MAP ParamGrid
{
public:
ParamGrid();
ParamGrid(double _minVal, double _maxVal, double _logStep);
CV_PROP_RW double minVal;
CV_PROP_RW double maxVal;
CV_PROP_RW double logStep;
};
class CV_EXPORTS TrainData
{
public:
static inline float missingValue() { return FLT_MAX; }
virtual ~TrainData();
virtual int getLayout() const = 0;
virtual int getNTrainSamples() const = 0;
virtual int getNTestSamples() const = 0;
virtual int getNSamples() const = 0;
virtual int getNVars() const = 0;
virtual int getNAllVars() const = 0;
virtual void getSample(InputArray varIdx, int sidx, float* buf) const = 0;
virtual Mat getSamples() const = 0;
virtual Mat getMissing() const = 0;
virtual Mat getTrainSamples(int layout=ROW_SAMPLE,
bool compressSamples=true,
bool compressVars=true) const = 0;
virtual Mat getTrainResponses() const = 0;
virtual Mat getTrainNormCatResponses() const = 0;
virtual Mat getTestResponses() const = 0;
virtual Mat getTestNormCatResponses() const = 0;
virtual Mat getResponses() const = 0;
virtual Mat getNormCatResponses() const = 0;
virtual Mat getSampleWeights() const = 0;
virtual Mat getTrainSampleWeights() const = 0;
virtual Mat getTestSampleWeights() const = 0;
virtual Mat getVarIdx() const = 0;
virtual Mat getVarType() const = 0;
virtual int getResponseType() const = 0;
virtual Mat getTrainSampleIdx() const = 0;
virtual Mat getTestSampleIdx() const = 0;
virtual void getValues(int vi, InputArray sidx, float* values) const = 0;
virtual void getNormCatValues(int vi, InputArray sidx, int* values) const = 0;
virtual Mat getDefaultSubstValues() const = 0;
virtual int getCatCount(int vi) const = 0;
virtual Mat getClassLabels() const = 0;
virtual Mat getCatOfs() const = 0;
virtual Mat getCatMap() const = 0;
virtual void setTrainTestSplit(int count, bool shuffle=true) = 0;
virtual void setTrainTestSplitRatio(double ratio, bool shuffle=true) = 0;
virtual void shuffleTrainTest() = 0;
static Mat getSubVector(const Mat& vec, const Mat& idx);
static Ptr<TrainData> loadFromCSV(const String& filename,
int headerLineCount,
int responseStartIdx=-1,
int responseEndIdx=-1,
const String& varTypeSpec=String(),
char delimiter=',',
char missch='?');
static Ptr<TrainData> create(InputArray samples, int layout, InputArray responses,
InputArray varIdx=noArray(), InputArray sampleIdx=noArray(),
InputArray sampleWeights=noArray(), InputArray varType=noArray());
};
class CV_EXPORTS_W StatModel : public Algorithm
{
public:
enum { UPDATE_MODEL = 1, RAW_OUTPUT=1, COMPRESSED_INPUT=2, PREPROCESSED_INPUT=4 };
virtual void clear();
virtual int getVarCount() const = 0;
virtual bool isTrained() const = 0;
virtual bool isClassifier() const = 0;
virtual bool train( const Ptr<TrainData>& trainData, int flags=0 );
virtual bool train( InputArray samples, int layout, InputArray responses );
virtual float calcError( const Ptr<TrainData>& data, bool test, OutputArray resp ) const;
virtual float predict( InputArray samples, OutputArray results=noArray(), int flags=0 ) const = 0;
template<typename _Tp> static Ptr<_Tp> load(const String& filename)
{
FileStorage fs(filename, FileStorage::READ);
Ptr<_Tp> model = _Tp::create();
model->read(fs.getFirstTopLevelNode());
return model->isTrained() ? model : Ptr<_Tp>();
}
template<typename _Tp> static Ptr<_Tp> train(const Ptr<TrainData>& data, const typename _Tp::Params& p, int flags=0)
{
Ptr<_Tp> model = _Tp::create(p);
return !model.empty() && model->train(data, flags) ? model : Ptr<_Tp>();
}
template<typename _Tp> static Ptr<_Tp> train(InputArray samples, int layout, InputArray responses,
const typename _Tp::Params& p, int flags=0)
{
Ptr<_Tp> model = _Tp::create(p);
return !model.empty() && model->train(TrainData::create(samples, layout, responses), flags) ? model : Ptr<_Tp>();
}
virtual void save(const String& filename) const;
virtual String getDefaultModelName() const = 0;
};
/****************************************************************************************\
* Normal Bayes Classifier *
\****************************************************************************************/
/* The structure, representing the grid range of statmodel parameters.
It is used for optimizing statmodel accuracy by varying model parameters,
the accuracy estimate being computed by cross-validation.
The grid is logarithmic, so <step> must be greater then 1. */
class CV_EXPORTS_W NormalBayesClassifier : public StatModel
{
public:
class CV_EXPORTS_W Params
{
public:
Params();
};
virtual float predictProb( InputArray inputs, OutputArray outputs,
OutputArray outputProbs, int flags=0 ) const = 0;
virtual void setParams(const Params& params) = 0;
virtual Params getParams() const = 0;
static Ptr<NormalBayesClassifier> create(const Params& params=Params());
};
/****************************************************************************************\
* K-Nearest Neighbour Classifier *
\****************************************************************************************/
// k Nearest Neighbors
class CV_EXPORTS_W KNearest : public StatModel
{
public:
class CV_EXPORTS_W_MAP Params
{
public:
Params(int defaultK=10, bool isclassifier=true);
CV_PROP_RW int defaultK;
CV_PROP_RW bool isclassifier;
};
virtual void setParams(const Params& p) = 0;
virtual Params getParams() const = 0;
virtual float findNearest( InputArray samples, int k,
OutputArray results,
OutputArray neighborResponses=noArray(),
OutputArray dist=noArray() ) const = 0;
static Ptr<KNearest> create(const Params& params=Params());
};
/****************************************************************************************\
* Support Vector Machines *
\****************************************************************************************/
// SVM model
class CV_EXPORTS_W SVM : public StatModel
{
public:
class CV_EXPORTS_W_MAP Params
{
public:
Params();
Params( int svm_type, int kernel_type,
double degree, double gamma, double coef0,
double Cvalue, double nu, double p,
const Mat& classWeights, TermCriteria termCrit );
CV_PROP_RW int svmType;
CV_PROP_RW int kernelType;
CV_PROP_RW double gamma, coef0, degree;
CV_PROP_RW double C; // for CV_SVM_C_SVC, CV_SVM_EPS_SVR and CV_SVM_NU_SVR
CV_PROP_RW double nu; // for CV_SVM_NU_SVC, CV_SVM_ONE_CLASS, and CV_SVM_NU_SVR
CV_PROP_RW double p; // for CV_SVM_EPS_SVR
CV_PROP_RW Mat classWeights; // for CV_SVM_C_SVC
CV_PROP_RW TermCriteria termCrit; // termination criteria
};
class CV_EXPORTS Kernel : public Algorithm
{
public:
virtual int getType() const = 0;
virtual void calc( int vcount, int n, const float* vecs, const float* another, float* results ) = 0;
};
// SVM type
enum { C_SVC=100, NU_SVC=101, ONE_CLASS=102, EPS_SVR=103, NU_SVR=104 };
// SVM kernel type
enum { CUSTOM=-1, LINEAR=0, POLY=1, RBF=2, SIGMOID=3, CHI2=4, INTER=5 };
// SVM params type
enum { C=0, GAMMA=1, P=2, NU=3, COEF=4, DEGREE=5 };
virtual bool trainAuto( const Ptr<TrainData>& data, int kFold = 10,
ParamGrid Cgrid = SVM::getDefaultGrid(SVM::C),
ParamGrid gammaGrid = SVM::getDefaultGrid(SVM::GAMMA),
ParamGrid pGrid = SVM::getDefaultGrid(SVM::P),
ParamGrid nuGrid = SVM::getDefaultGrid(SVM::NU),
ParamGrid coeffGrid = SVM::getDefaultGrid(SVM::COEF),
ParamGrid degreeGrid = SVM::getDefaultGrid(SVM::DEGREE),
bool balanced=false) = 0;
CV_WRAP virtual Mat getSupportVectors() const = 0;
virtual void setParams(const Params& p, const Ptr<Kernel>& customKernel=Ptr<Kernel>()) = 0;
virtual Params getParams() const = 0;
virtual Ptr<Kernel> getKernel() const = 0;
virtual double getDecisionFunction(int i, OutputArray alpha, OutputArray svidx) const = 0;
static ParamGrid getDefaultGrid( int param_id );
static Ptr<SVM> create(const Params& p=Params(), const Ptr<Kernel>& customKernel=Ptr<Kernel>());
};
/****************************************************************************************\
* Expectation - Maximization *
\****************************************************************************************/
class CV_EXPORTS_W EM : public StatModel
{
public:
// Type of covariation matrices
enum {COV_MAT_SPHERICAL=0, COV_MAT_DIAGONAL=1, COV_MAT_GENERIC=2, COV_MAT_DEFAULT=COV_MAT_DIAGONAL};
// Default parameters
2012-04-30 14:33:52 +00:00
enum {DEFAULT_NCLUSTERS=5, DEFAULT_MAX_ITERS=100};
2012-06-09 15:00:04 +00:00
// The initial step
enum {START_E_STEP=1, START_M_STEP=2, START_AUTO_STEP=0};
class CV_EXPORTS_W_MAP Params
{
public:
explicit Params(int nclusters=DEFAULT_NCLUSTERS, int covMatType=EM::COV_MAT_DIAGONAL,
const TermCriteria& termCrit=TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,
EM::DEFAULT_MAX_ITERS, 1e-6));
CV_PROP_RW int nclusters;
CV_PROP_RW int covMatType;
CV_PROP_RW TermCriteria termCrit;
};
virtual void setParams(const Params& p) = 0;
virtual Params getParams() const = 0;
virtual Mat getWeights() const = 0;
virtual Mat getMeans() const = 0;
virtual void getCovs(std::vector<Mat>& covs) const = 0;
CV_WRAP virtual Vec2d predict2(InputArray sample, OutputArray probs) const = 0;
virtual bool train( const Ptr<TrainData>& trainData, int flags=0 ) = 0;
static Ptr<EM> train(InputArray samples,
OutputArray logLikelihoods=noArray(),
OutputArray labels=noArray(),
OutputArray probs=noArray(),
const Params& params=Params());
static Ptr<EM> train_startWithE(InputArray samples, InputArray means0,
InputArray covs0=noArray(),
InputArray weights0=noArray(),
OutputArray logLikelihoods=noArray(),
OutputArray labels=noArray(),
OutputArray probs=noArray(),
const Params& params=Params());
static Ptr<EM> train_startWithM(InputArray samples, InputArray probs0,
OutputArray logLikelihoods=noArray(),
OutputArray labels=noArray(),
OutputArray probs=noArray(),
const Params& params=Params());
static Ptr<EM> create(const Params& params=Params());
};
/****************************************************************************************\
* Decision Tree *
\****************************************************************************************/
class CV_EXPORTS_W DTrees : public StatModel
{
public:
enum { PREDICT_AUTO=0, PREDICT_SUM=(1<<8), PREDICT_MAX_VOTE=(2<<8), PREDICT_MASK=(3<<8) };
class CV_EXPORTS_W_MAP Params
{
public:
Params();
Params( int maxDepth, int minSampleCount,
double regressionAccuracy, bool useSurrogates,
int maxCategories, int CVFolds,
bool use1SERule, bool truncatePrunedTree,
const Mat& priors );
CV_PROP_RW int maxCategories;
CV_PROP_RW int maxDepth;
CV_PROP_RW int minSampleCount;
CV_PROP_RW int CVFolds;
CV_PROP_RW bool useSurrogates;
CV_PROP_RW bool use1SERule;
CV_PROP_RW bool truncatePrunedTree;
CV_PROP_RW float regressionAccuracy;
CV_PROP_RW Mat priors;
};
class CV_EXPORTS Node
{
public:
Node();
double value;
int classIdx;
int parent;
int left;
int right;
int defaultDir;
int split;
};
class CV_EXPORTS Split
{
public:
Split();
int varIdx;
bool inversed;
float quality;
int next;
float c;
int subsetOfs;
};
virtual void setDParams(const Params& p);
virtual Params getDParams() const;
virtual const std::vector<int>& getRoots() const = 0;
virtual const std::vector<Node>& getNodes() const = 0;
virtual const std::vector<Split>& getSplits() const = 0;
virtual const std::vector<int>& getSubsets() const = 0;
static Ptr<DTrees> create(const Params& params=Params());
};
/****************************************************************************************\
* Random Trees Classifier *
\****************************************************************************************/
class CV_EXPORTS_W RTrees : public DTrees
{
public:
class CV_EXPORTS_W_MAP Params : public DTrees::Params
{
public:
Params();
Params( int maxDepth, int minSampleCount,
double regressionAccuracy, bool useSurrogates,
int maxCategories, const Mat& priors,
bool calcVarImportance, int nactiveVars,
TermCriteria termCrit );
CV_PROP_RW bool calcVarImportance; // true <=> RF processes variable importance
CV_PROP_RW int nactiveVars;
CV_PROP_RW TermCriteria termCrit;
};
virtual void setRParams(const Params& p) = 0;
virtual Params getRParams() const = 0;
virtual Mat getVarImportance() const = 0;
static Ptr<RTrees> create(const Params& params=Params());
};
/****************************************************************************************\
* Boosted tree classifier *
\****************************************************************************************/
class CV_EXPORTS_W Boost : public DTrees
{
public:
class CV_EXPORTS_W_MAP Params : public DTrees::Params
{
public:
CV_PROP_RW int boostType;
CV_PROP_RW int weakCount;
CV_PROP_RW double weightTrimRate;
Params();
Params( int boostType, int weakCount, double weightTrimRate,
int maxDepth, bool useSurrogates, const Mat& priors );
};
// Boosting type
enum { DISCRETE=0, REAL=1, LOGIT=2, GENTLE=3 };
virtual Params getBParams() const = 0;
virtual void setBParams(const Params& p) = 0;
static Ptr<Boost> create(const Params& params=Params());
};
/****************************************************************************************\
* Gradient Boosted Trees *
\****************************************************************************************/
/*class CV_EXPORTS_W GBTrees : public DTrees
{
public:
struct CV_EXPORTS_W_MAP Params : public DTrees::Params
{
CV_PROP_RW int weakCount;
CV_PROP_RW int lossFunctionType;
CV_PROP_RW float subsamplePortion;
CV_PROP_RW float shrinkage;
Params();
Params( int lossFunctionType, int weakCount, float shrinkage,
float subsamplePortion, int maxDepth, bool useSurrogates );
};
enum {SQUARED_LOSS=0, ABSOLUTE_LOSS, HUBER_LOSS=3, DEVIANCE_LOSS};
2012-06-09 15:00:04 +00:00
virtual void setK(int k) = 0;
2012-06-09 15:00:04 +00:00
virtual float predictSerial( InputArray samples,
OutputArray weakResponses, int flags) const = 0;
static Ptr<GBTrees> create(const Params& p);
};*/
/****************************************************************************************\
* Artificial Neural Networks (ANN) *
\****************************************************************************************/
/////////////////////////////////// Multi-Layer Perceptrons //////////////////////////////
class CV_EXPORTS_W ANN_MLP : public StatModel
{
public:
struct CV_EXPORTS_W_MAP Params
{
Params();
Params( const Mat& layerSizes, int activateFunc, double fparam1, double fparam2,
TermCriteria termCrit, int trainMethod, double param1, double param2=0 );
2012-06-09 15:00:04 +00:00
enum { BACKPROP=0, RPROP=1 };
2012-06-09 15:00:04 +00:00
CV_PROP_RW Mat layerSizes;
CV_PROP_RW int activateFunc;
CV_PROP_RW double fparam1;
CV_PROP_RW double fparam2;
CV_PROP_RW TermCriteria termCrit;
CV_PROP_RW int trainMethod;
2012-06-09 15:00:04 +00:00
// backpropagation parameters
CV_PROP_RW double bpDWScale, bpMomentScale;
2012-06-09 15:00:04 +00:00
// rprop parameters
CV_PROP_RW double rpDW0, rpDWPlus, rpDWMinus, rpDWMin, rpDWMax;
};
2012-06-09 15:00:04 +00:00
// possible activation functions
enum { IDENTITY = 0, SIGMOID_SYM = 1, GAUSSIAN = 2 };
// available training flags
enum { UPDATE_WEIGHTS = 1, NO_INPUT_SCALE = 2, NO_OUTPUT_SCALE = 4 };
virtual Mat getWeights(int layerIdx) const = 0;
virtual void setParams(const Params& p) = 0;
virtual Params getParams() const = 0;
static Ptr<ANN_MLP> create(const Params& params=Params());
};
/*!
Fast Nearest Neighbor Search Class.
The class implements D. Lowe BBF (Best-Bin-First) algorithm for the last
approximate (or accurate) nearest neighbor search in multi-dimensional spaces.
First, a set of vectors is passed to KDTree::KDTree() constructor
or KDTree::build() method, where it is reordered.
Then arbitrary vectors can be passed to KDTree::findNearest() methods, which
find the K nearest neighbors among the vectors from the initial set.
The user can balance between the speed and accuracy of the search by varying Emax
parameter, which is the number of leaves that the algorithm checks.
The larger parameter values yield more accurate results at the expense of lower processing speed.
\code
KDTree T(points, false);
const int K = 3, Emax = INT_MAX;
int idx[K];
float dist[K];
T.findNearest(query_vec, K, Emax, idx, 0, dist);
CV_Assert(dist[0] <= dist[1] && dist[1] <= dist[2]);
\endcode
*/
class CV_EXPORTS_W KDTree
{
public:
/*!
The node of the search tree.
*/
struct Node
{
Node() : idx(-1), left(-1), right(-1), boundary(0.f) {}
Node(int _idx, int _left, int _right, float _boundary)
: idx(_idx), left(_left), right(_right), boundary(_boundary) {}
//! split dimension; >=0 for nodes (dim), < 0 for leaves (index of the point)
int idx;
//! node indices of the left and the right branches
int left, right;
//! go to the left if query_vec[node.idx]<=node.boundary, otherwise go to the right
float boundary;
};
//! the default constructor
CV_WRAP KDTree();
//! the full constructor that builds the search tree
CV_WRAP KDTree(InputArray points, bool copyAndReorderPoints = false);
//! the full constructor that builds the search tree
CV_WRAP KDTree(InputArray points, InputArray _labels,
bool copyAndReorderPoints = false);
//! builds the search tree
CV_WRAP void build(InputArray points, bool copyAndReorderPoints = false);
//! builds the search tree
CV_WRAP void build(InputArray points, InputArray labels,
bool copyAndReorderPoints = false);
//! finds the K nearest neighbors of "vec" while looking at Emax (at most) leaves
CV_WRAP int findNearest(InputArray vec, int K, int Emax,
OutputArray neighborsIdx,
OutputArray neighbors = noArray(),
OutputArray dist = noArray(),
OutputArray labels = noArray()) const;
//! finds all the points from the initial set that belong to the specified box
CV_WRAP void findOrthoRange(InputArray minBounds,
InputArray maxBounds,
OutputArray neighborsIdx,
OutputArray neighbors = noArray(),
OutputArray labels = noArray()) const;
//! returns vectors with the specified indices
CV_WRAP void getPoints(InputArray idx, OutputArray pts,
OutputArray labels = noArray()) const;
//! return a vector with the specified index
const float* getPoint(int ptidx, int* label = 0) const;
//! returns the search space dimensionality
CV_WRAP int dims() const;
std::vector<Node> nodes; //!< all the tree nodes
CV_PROP Mat points; //!< all the points. It can be a reordered copy of the input vector set or the original vector set.
CV_PROP std::vector<int> labels; //!< the parallel array of labels.
CV_PROP int maxDepth; //!< maximum depth of the search tree. Do not modify it
CV_PROP_RW int normType; //!< type of the distance (cv::NORM_L1 or cv::NORM_L2) used for search. Initially set to cv::NORM_L2, but you can modify it
};
/****************************************************************************************\
* Auxilary functions declarations *
\****************************************************************************************/
/* Generates <sample> from multivariate normal distribution, where <mean> - is an
average row vector, <cov> - symmetric covariation matrix */
CV_EXPORTS void randMVNormal( InputArray mean, InputArray cov, int nsamples, OutputArray samples);
/* Generates sample from gaussian mixture distribution */
CV_EXPORTS void randGaussMixture( InputArray means, InputArray covs, InputArray weights,
int nsamples, OutputArray samples, OutputArray sampClasses );
/* creates test set */
CV_EXPORTS void createConcentricSpheresTestSet( int nsamples, int nfeatures, int nclasses,
OutputArray samples, OutputArray responses);
}
}
#endif // __cplusplus
#endif // __OPENCV_ML_HPP__
/* End of file. */