opencv/modules/ocl/perf/test_imgproc.cpp

1552 lines
41 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Niko Li, newlife20080214@gmail.com
// Jia Haipeng, jiahaipeng95@gmail.com
// Shengen Yan, yanshengen@gmail.com
// Jiang Liyuan, lyuan001.good@163.com
// Rock Li, Rock.Li@amd.com
// Zailong Wu, bullet@yeah.net
// Xu Pang, pangxu010@163.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#ifdef HAVE_OPENCL
using namespace cvtest;
using namespace testing;
using namespace std;
MatType nulltype = -1;
#define ONE_TYPE(type) testing::ValuesIn(typeVector(type))
#define NULL_TYPE testing::ValuesIn(typeVector(nulltype))
vector<MatType> typeVector(MatType type)
{
vector<MatType> v;
v.push_back(type);
return v;
}
PARAM_TEST_CASE(ImgprocTestBase, MatType,MatType,MatType,MatType,MatType, bool)
{
int type1,type2,type3,type4,type5;
cv::Scalar val;
// set up roi
int roicols;
int roirows;
int src1x;
int src1y;
int src2x;
int src2y;
int dstx;
int dsty;
int dst1x;
int dst1y;
int maskx;
int masky;
//mat
cv::Mat mat1;
cv::Mat mat2;
cv::Mat mask;
cv::Mat dst;
cv::Mat dst1; //bak, for two outputs
//mat with roi
cv::Mat mat1_roi;
cv::Mat mat2_roi;
cv::Mat mask_roi;
cv::Mat dst_roi;
cv::Mat dst1_roi; //bak
std::vector<cv::ocl::Info> oclinfo;
//ocl mat
cv::ocl::oclMat clmat1;
cv::ocl::oclMat clmat2;
cv::ocl::oclMat clmask;
cv::ocl::oclMat cldst;
cv::ocl::oclMat cldst1; //bak
//ocl mat with roi
cv::ocl::oclMat clmat1_roi;
cv::ocl::oclMat clmat2_roi;
cv::ocl::oclMat clmask_roi;
cv::ocl::oclMat cldst_roi;
cv::ocl::oclMat cldst1_roi;
virtual void SetUp()
{
type1 = GET_PARAM(0);
type2 = GET_PARAM(1);
type3 = GET_PARAM(2);
type4 = GET_PARAM(3);
type5 = GET_PARAM(4);
cv::RNG& rng = TS::ptr()->get_rng();
cv::Size size(MWIDTH, MHEIGHT);
double min = 1,max = 20;
int devnums = getDevice(oclinfo);
CV_Assert(devnums>0);
//if you want to use undefault device, set it here
//setDevice(oclinfo[0]);
cv::ocl::setBinpath(CLBINPATH);
if(type1!=nulltype)
{
mat1 = randomMat(rng, size, type1, min, max, false);
clmat1 = mat1;
}
if(type2!=nulltype)
{
mat2 = randomMat(rng, size, type2, min, max, false);
clmat2 = mat2;
}
if(type3!=nulltype)
{
dst = randomMat(rng, size, type3, min, max, false);
cldst = dst;
}
if(type4!=nulltype)
{
dst1 = randomMat(rng, size, type4, min, max, false);
cldst1 = dst1;
}
if(type5!=nulltype)
{
mask = randomMat(rng, size, CV_8UC1, 0, 2, false);
cv::threshold(mask, mask, 0.5, 255., type5);
clmask = mask;
}
val = cv::Scalar(rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0));
}
void Has_roi(int b)
{
//cv::RNG& rng = TS::ptr()->get_rng();
if(b)
{
//randomize ROI
roicols = mat1.cols-1; //start
roirows = mat1.rows-1;
src1x = 1;
src2x = 1;
src1y = 1;
src2y = 1;
dstx = 1;
dsty =1;
dst1x = 1;
dst1y =1;
maskx =1;
masky =1;
}else
{
roicols = mat1.cols;
roirows = mat1.rows;
src1x = 0;
src2x = 0;
src1y = 0;
src2y = 0;
dstx = 0;
dsty = 0;
dst1x =0;
dst1y =0;
maskx =0;
masky =0;
};
if(type1!=nulltype)
{
mat1_roi = mat1(Rect(src1x,src1y,roicols,roirows));
//clmat1_roi = clmat1(Rect(src1x,src1y,roicols,roirows));
}
if(type2!=nulltype)
{
mat2_roi = mat2(Rect(src2x,src2y,roicols,roirows));
//clmat2_roi = clmat2(Rect(src2x,src2y,roicols,roirows));
}
if(type3!=nulltype)
{
dst_roi = dst(Rect(dstx,dsty,roicols,roirows));
//cldst_roi = cldst(Rect(dstx,dsty,roicols,roirows));
}
if(type4!=nulltype)
{
dst1_roi = dst1(Rect(dst1x,dst1y,roicols,roirows));
//cldst1_roi = cldst1(Rect(dst1x,dst1y,roicols,roirows));
}
if(type5!=nulltype)
{
mask_roi = mask(Rect(maskx,masky,roicols,roirows));
//clmask_roi = clmask(Rect(maskx,masky,roicols,roirows));
}
}
void random_roi()
{
cv::RNG& rng = TS::ptr()->get_rng();
//randomize ROI
roicols = rng.uniform(1, mat1.cols);
roirows = rng.uniform(1, mat1.rows);
src1x = rng.uniform(0, mat1.cols - roicols);
src1y = rng.uniform(0, mat1.rows - roirows);
src2x = rng.uniform(0, mat2.cols - roicols);
src2y = rng.uniform(0, mat2.rows - roirows);
dstx = rng.uniform(0, dst.cols - roicols);
dsty = rng.uniform(0, dst.rows - roirows);
dst1x = rng.uniform(0, dst1.cols - roicols);
dst1y = rng.uniform(0, dst1.rows - roirows);
maskx = rng.uniform(0, mask.cols - roicols);
masky = rng.uniform(0, mask.rows - roirows);
if(type1!=nulltype)
{
mat1_roi = mat1(Rect(src1x,src1y,roicols,roirows));
//clmat1_roi = clmat1(Rect(src1x,src1y,roicols,roirows));
}
if(type2!=nulltype)
{
mat2_roi = mat2(Rect(src2x,src2y,roicols,roirows));
//clmat2_roi = clmat2(Rect(src2x,src2y,roicols,roirows));
}
if(type3!=nulltype)
{
dst_roi = dst(Rect(dstx,dsty,roicols,roirows));
//cldst_roi = cldst(Rect(dstx,dsty,roicols,roirows));
}
if(type4!=nulltype)
{
dst1_roi = dst1(Rect(dst1x,dst1y,roicols,roirows));
//cldst1_roi = cldst1(Rect(dst1x,dst1y,roicols,roirows));
}
if(type5!=nulltype)
{
mask_roi = mask(Rect(maskx,masky,roicols,roirows));
//clmask_roi = clmask(Rect(maskx,masky,roicols,roirows));
}
}
};
////////////////////////////////equalizeHist//////////////////////////////////////////
struct equalizeHist : ImgprocTestBase {};
TEST_P(equalizeHist, MatType)
{
if (mat1.type() != CV_8UC1 || mat1.type() != dst.type())
{
cout<<"Unsupported type"<<endl;
EXPECT_DOUBLE_EQ(0.0, 0.0);
}
else
{
#ifndef PRINT_KERNEL_RUN_TIME
double totalcputick=0;
double totalgputick=0;
double totalgputick_kernel=0;
double t0=0;
double t1=0;
double t2=0;
for(int k=0;k<2;k++){
totalcputick=0;
totalgputick=0;
totalgputick_kernel=0;
for(int j = 0; j < LOOP_TIMES+1; j ++)
{
Has_roi(k);
t0 = (double)cvGetTickCount();//cpu start
cv::equalizeHist(mat1_roi, dst_roi);
t0 = (double)cvGetTickCount() - t0;//cpu end
t1 = (double)cvGetTickCount();//gpu start1
if(type1!=nulltype)
{
clmat1_roi = clmat1(Rect(src1x,src1y,roicols,roirows));
}
cldst_roi = cldst(Rect(dstx,dsty,roicols,roirows));
t2=(double)cvGetTickCount();//kernel
cv::ocl::equalizeHist(clmat1_roi, cldst_roi);
t2 = (double)cvGetTickCount() - t2;//kernel
cv::Mat cpu_cldst;
//cldst.download(cpu_cldst);//download
t1 = (double)cvGetTickCount() - t1;//gpu end1
if(j == 0)
continue;
totalgputick=t1+totalgputick;
totalcputick=t0+totalcputick;
totalgputick_kernel=t2+totalgputick_kernel;
}
if(k==0){cout<<"no roi\n";}else{cout<<"with roi\n";};
cout << "average cpu runtime is " << totalcputick/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
cout << "average gpu runtime is " << totalgputick/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
cout << "average gpu runtime without data transfer is " << totalgputick_kernel/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
}
#else
for(int j = 0; j < 2; j ++)
{
Has_roi(j);
if(type1!=nulltype)
{
clmat1_roi = clmat1(Rect(src1x,src1y,roicols,roirows));
}
if(j==0){cout<<"no roi:";}else{cout<<"\nwith roi:";};
cv::ocl::equalizeHist(clmat1_roi, cldst_roi);
};
#endif
}
}
////////////////////////////////bilateralFilter////////////////////////////////////////////
struct bilateralFilter : ImgprocTestBase {};
TEST_P(bilateralFilter, Mat)
{
double sigmacolor = 50.0;
int radius = 9;
int d = 2*radius+1;
double sigmaspace = 20.0;
int bordertype[] = {cv::BORDER_CONSTANT,cv::BORDER_REPLICATE/*,BORDER_REFLECT,BORDER_WRAP,BORDER_REFLECT_101*/};
//const char* borderstr[]={"BORDER_CONSTANT", "BORDER_REPLICATE"/*, "BORDER_REFLECT","BORDER_WRAP","BORDER_REFLECT_101"*/};
if (mat1.type() != CV_8UC1 || mat1.type() != dst.type())
{
cout<<"Unsupported type"<<endl;
EXPECT_DOUBLE_EQ(0.0, 0.0);
}
else
{
for(int i=0;i<sizeof(bordertype)/sizeof(int);i++){
#ifndef PRINT_KERNEL_RUN_TIME
double totalcputick=0;
double totalgputick=0;
double totalgputick_kernel=0;
double t0=0;
double t1=0;
double t2=0;
for(int k=0;k<2;k++){
totalcputick=0;
totalgputick=0;
totalgputick_kernel=0;
for(int j = 0; j < LOOP_TIMES+1; j ++)
{
Has_roi(k);
t0 = (double)cvGetTickCount();//cpu start
cv::bilateralFilter(mat1_roi, dst_roi, d,sigmacolor,sigmaspace, bordertype[i]);
t0 = (double)cvGetTickCount() - t0;//cpu end
t1 = (double)cvGetTickCount();//gpu start1
if(type1!=nulltype)
{
clmat1_roi = clmat1(Rect(src1x,src1y,roicols,roirows));
}
t2=(double)cvGetTickCount();//kernel
cv::ocl::bilateralFilter(clmat1_roi, cldst_roi, d,sigmacolor,sigmaspace, bordertype[i]);
t2 = (double)cvGetTickCount() - t2;//kernel
cv::Mat cpu_cldst;
cldst.download(cpu_cldst);//download
t1 = (double)cvGetTickCount() - t1;//gpu end1
if(j == 0)
continue;
totalgputick=t1+totalgputick;
totalcputick=t0+totalcputick;
totalgputick_kernel=t2+totalgputick_kernel;
}
if(k==0){cout<<"no roi\n";}else{cout<<"with roi\n";};
cout << "average cpu runtime is " << totalcputick/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
cout << "average gpu runtime is " << totalgputick/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
cout << "average gpu runtime without data transfer is " << totalgputick_kernel/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
}
#else
for(int j = 0; j < 2; j ++)
{
Has_roi(j);
if(type1!=nulltype)
{
clmat1_roi = clmat1(Rect(src1x,src1y,roicols,roirows));
};
if(j==0){cout<<"no roi:";}else{cout<<"\nwith roi:";};
cv::ocl::bilateralFilter(clmat1_roi, cldst_roi, d,sigmacolor,sigmaspace, bordertype[i]);
};
#endif
};
}
}
////////////////////////////////copyMakeBorder////////////////////////////////////////////
struct CopyMakeBorder : ImgprocTestBase {};
TEST_P(CopyMakeBorder, Mat)
{
int bordertype[] = {cv::BORDER_CONSTANT,cv::BORDER_REPLICATE/*,BORDER_REFLECT,BORDER_WRAP,BORDER_REFLECT_101*/};
//const char* borderstr[]={"BORDER_CONSTANT", "BORDER_REPLICATE"/*, "BORDER_REFLECT","BORDER_WRAP","BORDER_REFLECT_101"*/};
if ((mat1.type() != CV_8UC1 && mat1.type() != CV_8UC4 && mat1.type() != CV_32SC1) || mat1.type() != dst.type())
{
cout<<"Unsupported type"<<endl;
EXPECT_DOUBLE_EQ(0.0, 0.0);
}
else
{
for(int i=0;i<sizeof(bordertype)/sizeof(int);i++){
#ifndef PRINT_KERNEL_RUN_TIME
double totalcputick=0;
double totalgputick=0;
double totalgputick_kernel=0;
double t0=0;
double t1=0;
double t2=0;
for(int k=0;k<2;k++){
totalcputick=0;
totalgputick=0;
totalgputick_kernel=0;
for(int j = 0; j < LOOP_TIMES+1; j ++)
{
Has_roi(k);
t0 = (double)cvGetTickCount();//cpu start
cv::copyMakeBorder(mat1_roi, dst_roi, 7,5,5,7, bordertype[i],cv::Scalar(1.0));
t0 = (double)cvGetTickCount() - t0;//cpu end
t1 = (double)cvGetTickCount();//gpu start1
if(type1!=nulltype)
{
clmat1_roi = clmat1(Rect(src1x,src1y,roicols,roirows));
}
t2=(double)cvGetTickCount();//kernel
cv::ocl::copyMakeBorder(clmat1_roi, cldst_roi,7,5,5,7, bordertype[i],cv::Scalar(1.0));
t2 = (double)cvGetTickCount() - t2;//kernel
cv::Mat cpu_cldst;
cldst.download(cpu_cldst);//download
t1 = (double)cvGetTickCount() - t1;//gpu end1
if(j == 0)
continue;
totalgputick=t1+totalgputick;
totalcputick=t0+totalcputick;
totalgputick_kernel=t2+totalgputick_kernel;
}
if(k==0){cout<<"no roi\n";}else{cout<<"with roi\n";};
cout << "average cpu runtime is " << totalcputick/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
cout << "average gpu runtime is " << totalgputick/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
cout << "average gpu runtime without data transfer is " << totalgputick_kernel/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
}
#else
for(int j = 0; j < 2; j ++)
{
Has_roi(j);
if(type1!=nulltype)
{
clmat1_roi = clmat1(Rect(src1x,src1y,roicols,roirows));
};
if(j==0){cout<<"no roi:";}else{cout<<"\nwith roi:";};
cv::ocl::copyMakeBorder(clmat1_roi, cldst_roi,7,5,5,7, bordertype[i],cv::Scalar(1.0));
};
#endif
};
}
}
////////////////////////////////cornerMinEigenVal//////////////////////////////////////////
struct cornerMinEigenVal : ImgprocTestBase {};
TEST_P(cornerMinEigenVal, Mat)
{
#ifndef PRINT_KERNEL_RUN_TIME
double totalcputick=0;
double totalgputick=0;
double totalgputick_kernel=0;
double t0=0;
double t1=0;
double t2=0;
for(int k=0;k<2;k++){
totalcputick=0;
totalgputick=0;
totalgputick_kernel=0;
for(int j = 0; j < LOOP_TIMES+1; j ++)
{
Has_roi(k);
int blockSize = 7, apertureSize= 1 + 2 * (rand() % 4);
int borderType = cv::BORDER_REFLECT;
t0 = (double)cvGetTickCount();//cpu start
cv::cornerMinEigenVal(mat1_roi, dst_roi, blockSize, apertureSize, borderType);
t0 = (double)cvGetTickCount() - t0;//cpu end
t1 = (double)cvGetTickCount();//gpu start1
if(type1!=nulltype)
{
clmat1_roi = clmat1(Rect(src1x,src1y,roicols,roirows));
}
t2=(double)cvGetTickCount();//kernel
cv::ocl::cornerMinEigenVal(clmat1_roi, cldst_roi, blockSize, apertureSize, borderType);
t2 = (double)cvGetTickCount() - t2;//kernel
cv::Mat cpu_cldst;
cldst.download(cpu_cldst);//download
t1 = (double)cvGetTickCount() - t1;//gpu end1
if(j == 0)
continue;
totalgputick=t1+totalgputick;
totalcputick=t0+totalcputick;
totalgputick_kernel=t2+totalgputick_kernel;
}
if(k==0){cout<<"no roi\n";}else{cout<<"with roi\n";};
cout << "average cpu runtime is " << totalcputick/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
cout << "average gpu runtime is " << totalgputick/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
cout << "average gpu runtime without data transfer is " << totalgputick_kernel/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
}
#else
for(int j = 0; j < 2; j ++)
{
Has_roi(j);
int blockSize = 7, apertureSize= 1 + 2 * (rand() % 4);
int borderType = cv::BORDER_REFLECT;
if(type1!=nulltype)
{
clmat1_roi = clmat1(Rect(src1x,src1y,roicols,roirows));
};
if(j==0){cout<<"no roi:";}else{cout<<"\nwith roi:";};
cv::ocl::cornerMinEigenVal(clmat1_roi, cldst_roi, blockSize, apertureSize, borderType);
};
#endif
}
////////////////////////////////cornerHarris//////////////////////////////////////////
struct cornerHarris : ImgprocTestBase {};
TEST_P(cornerHarris, Mat)
{
#ifndef PRINT_KERNEL_RUN_TIME
double totalcputick=0;
double totalgputick=0;
double totalgputick_kernel=0;
double t0=0;
double t1=0;
double t2=0;
for(int k=0;k<2;k++){
totalcputick=0;
totalgputick=0;
totalgputick_kernel=0;
for(int j = 0; j < LOOP_TIMES+1; j ++)
{
Has_roi(k);
int blockSize = 7, apertureSize= 3;
int borderType = cv::BORDER_REFLECT;
double kk = 2;
t0 = (double)cvGetTickCount();//cpu start
cv::cornerHarris(mat1_roi, dst_roi, blockSize, apertureSize, kk, borderType);
t0 = (double)cvGetTickCount() - t0;//cpu end
t1 = (double)cvGetTickCount();//gpu start1
if(type1!=nulltype)
{
clmat1_roi = clmat1(Rect(src1x,src1y,roicols,roirows));
}
t2=(double)cvGetTickCount();//kernel
cv::ocl::cornerHarris(clmat1_roi, cldst_roi, blockSize, apertureSize, kk, borderType);
t2 = (double)cvGetTickCount() - t2;//kernel
cv::Mat cpu_cldst;
cldst.download(cpu_cldst);//download
t1 = (double)cvGetTickCount() - t1;//gpu end1
if(j == 0)
continue;
totalgputick=t1+totalgputick;
totalcputick=t0+totalcputick;
totalgputick_kernel=t2+totalgputick_kernel;
}
if(k==0){cout<<"no roi\n";}else{cout<<"with roi\n";};
cout << "average cpu runtime is " << totalcputick/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
cout << "average gpu runtime is " << totalgputick/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
cout << "average gpu runtime without data transfer is " << totalgputick_kernel/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
}
#else
for(int j = 0; j < 2; j ++)
{
Has_roi(j);
double kk = 2;
int blockSize = 7, apertureSize= 3;
int borderType = cv::BORDER_REFLECT;
if(type1!=nulltype)
{
clmat1_roi = clmat1(Rect(src1x,src1y,roicols,roirows));
};
if(j==0){cout<<"no roi:";}else{cout<<"\nwith roi:";};
cv::ocl::cornerHarris(clmat1_roi, cldst_roi, blockSize, apertureSize, kk, borderType);
};
#endif
}
////////////////////////////////integral/////////////////////////////////////////////////
struct integral : ImgprocTestBase {};
TEST_P(integral, Mat)
{
#ifndef PRINT_KERNEL_RUN_TIME
double totalcputick=0;
double totalgputick=0;
double totalgputick_kernel=0;
double t0=0;
double t1=0;
double t2=0;
for(int k=0;k<2;k++){
totalcputick=0;
totalgputick=0;
totalgputick_kernel=0;
for(int j = 0; j < LOOP_TIMES+1; j ++)
{
Has_roi(k);
t0 = (double)cvGetTickCount();//cpu start
cv::integral(mat1_roi, dst_roi, dst1_roi);
t0 = (double)cvGetTickCount() - t0;//cpu end
t1 = (double)cvGetTickCount();//gpu start1
if(type1!=nulltype)
{
clmat1_roi = clmat1(Rect(src1x,src1y,roicols,roirows));
}
t2=(double)cvGetTickCount();//kernel
cv::ocl::integral(clmat1_roi, cldst_roi, cldst1_roi);
t2 = (double)cvGetTickCount() - t2;//kernel
cv::Mat cpu_cldst;
cv::Mat cpu_cldst1;
cldst.download(cpu_cldst);//download
cldst1.download(cpu_cldst1);
t1 = (double)cvGetTickCount() - t1;//gpu end1
if(j == 0)
continue;
totalgputick=t1+totalgputick;
totalcputick=t0+totalcputick;
totalgputick_kernel=t2+totalgputick_kernel;
}
if(k==0){cout<<"no roi\n";}else{cout<<"with roi\n";};
cout << "average cpu runtime is " << totalcputick/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
cout << "average gpu runtime is " << totalgputick/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
cout << "average gpu runtime without data transfer is " << totalgputick_kernel/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
}
#else
for(int j = 0; j < 2; j ++)
{
Has_roi(j);
if(type1!=nulltype)
{
clmat1_roi = clmat1(Rect(src1x,src1y,roicols,roirows));
};
if(j==0){cout<<"no roi:";}else{cout<<"\nwith roi:";};
cv::ocl::integral(clmat1_roi, cldst_roi, cldst1_roi);
};
#endif
}
/////////////////////////////////////////////////////////////////////////////////////////////////
// warpAffine & warpPerspective
PARAM_TEST_CASE(WarpTestBase, MatType, int)
{
int type;
cv::Size size;
int interpolation;
//src mat
cv::Mat mat1;
cv::Mat dst;
// set up roi
int src_roicols;
int src_roirows;
int dst_roicols;
int dst_roirows;
int src1x;
int src1y;
int dstx;
int dsty;
//src mat with roi
cv::Mat mat1_roi;
cv::Mat dst_roi;
std::vector<cv::ocl::Info> oclinfo;
//ocl dst mat for testing
cv::ocl::oclMat gdst_whole;
//ocl mat with roi
cv::ocl::oclMat gmat1;
cv::ocl::oclMat gdst;
virtual void SetUp()
{
type = GET_PARAM(0);
//dsize = GET_PARAM(1);
interpolation = GET_PARAM(1);
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(MWIDTH, MHEIGHT);
mat1 = randomMat(rng, size, type, 5, 16, false);
dst = randomMat(rng, size, type, 5, 16, false);
int devnums = getDevice(oclinfo);
CV_Assert(devnums > 0);
//if you want to use undefault device, set it here
//setDevice(oclinfo[0]);
cv::ocl::setBinpath(CLBINPATH);
}
void Has_roi(int b)
{
//cv::RNG& rng = TS::ptr()->get_rng();
if(b)
{
//randomize ROI
src_roicols = mat1.cols-1; //start
src_roirows = mat1.rows-1;
dst_roicols=dst.cols-1;
dst_roirows=dst.rows-1;
src1x = 1;
src1y = 1;
dstx = 1;
dsty =1;
}else
{
src_roicols = mat1.cols;
src_roirows = mat1.rows;
dst_roicols=dst.cols;
dst_roirows=dst.rows;
src1x = 0;
src1y = 0;
dstx = 0;
dsty = 0;
};
mat1_roi = mat1(Rect(src1x,src1y,src_roicols,src_roirows));
dst_roi = dst(Rect(dstx,dsty,dst_roicols,dst_roirows));
}
};
/////warpAffine
struct WarpAffine : WarpTestBase{};
TEST_P(WarpAffine, Mat)
{
static const double coeffs[2][3] =
{
{cos(3.14 / 6), -sin(3.14 / 6), 100.0},
{sin(3.14 / 6), cos(3.14 / 6), -100.0}
};
Mat M(2, 3, CV_64F, (void*)coeffs);
#ifndef PRINT_KERNEL_RUN_TIME
double totalcputick=0;
double totalgputick=0;
double totalgputick_kernel=0;
double t0=0;
double t1=0;
double t2=0;
for(int k=0;k<2;k++){
totalcputick=0;
totalgputick=0;
totalgputick_kernel=0;
for(int j = 0; j < LOOP_TIMES+1; j ++)
{
Has_roi(k);
t0 = (double)cvGetTickCount();//cpu start
cv::warpAffine(mat1_roi, dst_roi, M, size, interpolation);
t0 = (double)cvGetTickCount() - t0;//cpu end
t1 = (double)cvGetTickCount();//gpu start1
gdst_whole = dst;
gdst = gdst_whole(Rect(dstx,dsty,dst_roicols,dst_roirows));
gmat1 = mat1_roi;
t2=(double)cvGetTickCount();//kernel
cv::ocl::warpAffine(gmat1, gdst, M, size, interpolation);
t2 = (double)cvGetTickCount() - t2;//kernel
cv::Mat cpu_dst;
gdst_whole.download (cpu_dst);//download
t1 = (double)cvGetTickCount() - t1;//gpu end1
if(j == 0)
continue;
totalgputick=t1+totalgputick;
totalcputick=t0+totalcputick;
totalgputick_kernel=t2+totalgputick_kernel;
}
if(k==0){cout<<"no roi\n";}else{cout<<"with roi\n";};
cout << "average cpu runtime is " << totalcputick/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
cout << "average gpu runtime is " << totalgputick/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
cout << "average gpu runtime without data transfer is " << totalgputick_kernel/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
}
#else
for(int j = 0; j < 2; j ++)
{
Has_roi(j);
gdst_whole = dst;
gdst = gdst_whole(Rect(dstx,dsty,dst_roicols,dst_roirows));
gmat1 = mat1_roi;
if(j==0){cout<<"no roi:";}else{cout<<"\nwith roi:";};
cv::ocl::warpAffine(gmat1, gdst, M, size, interpolation);
};
#endif
}
// warpPerspective
struct WarpPerspective : WarpTestBase{};
TEST_P(WarpPerspective, Mat)
{
static const double coeffs[3][3] =
{
{cos(3.14 / 6), -sin(3.14 / 6), 100.0},
{sin(3.14 / 6), cos(3.14 / 6), -100.0},
{0.0, 0.0, 1.0}
};
Mat M(3, 3, CV_64F, (void*)coeffs);
#ifndef PRINT_KERNEL_RUN_TIME
double totalcputick=0;
double totalgputick=0;
double totalgputick_kernel=0;
double t0=0;
double t1=0;
double t2=0;
for(int k=0;k<2;k++){
totalcputick=0;
totalgputick=0;
totalgputick_kernel=0;
for(int j = 0; j < LOOP_TIMES+1; j ++)
{
Has_roi(k);
t0 = (double)cvGetTickCount();//cpu start
cv::warpPerspective(mat1_roi, dst_roi, M, size, interpolation);
t0 = (double)cvGetTickCount() - t0;//cpu end
t1 = (double)cvGetTickCount();//gpu start1
gdst_whole = dst;
gdst = gdst_whole(Rect(dstx,dsty,dst_roicols,dst_roirows));
gmat1 = mat1_roi;
t2=(double)cvGetTickCount();//kernel
cv::ocl::warpPerspective(gmat1, gdst, M, size, interpolation);
t2 = (double)cvGetTickCount() - t2;//kernel
cv::Mat cpu_dst;
gdst_whole.download (cpu_dst);//download
t1 = (double)cvGetTickCount() - t1;//gpu end1
if(j == 0)
continue;
totalgputick=t1+totalgputick;
totalcputick=t0+totalcputick;
totalgputick_kernel=t2+totalgputick_kernel;
}
if(k==0){cout<<"no roi\n";}else{cout<<"with roi\n";};
cout << "average cpu runtime is " << totalcputick/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
cout << "average gpu runtime is " << totalgputick/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
cout << "average gpu runtime without data transfer is " << totalgputick_kernel/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
}
#else
for(int j = 0; j < 2; j ++)
{
Has_roi(j);
gdst_whole = dst;
gdst = gdst_whole(Rect(dstx,dsty,dst_roicols,dst_roirows));
gmat1 = mat1_roi;
if(j==0){cout<<"no roi:";}else{cout<<"\nwith roi:";};
cv::ocl::warpPerspective(gmat1, gdst, M, size, interpolation);
};
#endif
}
/////////////////////////////////////////////////////////////////////////////////////////////////
// resize
PARAM_TEST_CASE(Resize, MatType, cv::Size, double, double, int)
{
int type;
cv::Size dsize;
double fx, fy;
int interpolation;
//src mat
cv::Mat mat1;
cv::Mat dst;
// set up roi
int src_roicols;
int src_roirows;
int dst_roicols;
int dst_roirows;
int src1x;
int src1y;
int dstx;
int dsty;
//src mat with roi
cv::Mat mat1_roi;
cv::Mat dst_roi;
std::vector<cv::ocl::Info> oclinfo;
//ocl dst mat for testing
cv::ocl::oclMat gdst_whole;
//ocl mat with roi
cv::ocl::oclMat gmat1;
cv::ocl::oclMat gdst;
virtual void SetUp()
{
type = GET_PARAM(0);
dsize = GET_PARAM(1);
fx = GET_PARAM(2);
fy = GET_PARAM(3);
interpolation = GET_PARAM(4);
cv::RNG& rng = TS::ptr()->get_rng();
cv::Size size(MWIDTH, MHEIGHT);
if(dsize == cv::Size() && !(fx > 0 && fy > 0))
{
cout << "invalid dsize and fx fy" << endl;
return;
}
if(dsize == cv::Size())
{
dsize.width = (int)(size.width * fx);
dsize.height = (int)(size.height * fy);
}
mat1 = randomMat(rng, size, type, 5, 16, false);
dst = randomMat(rng, dsize, type, 5, 16, false);
int devnums = getDevice(oclinfo);
CV_Assert(devnums > 0);
//if you want to use undefault device, set it here
//setDevice(oclinfo[0]);
cv::ocl::setBinpath(CLBINPATH);
}
void Has_roi(int b)
{
//cv::RNG& rng = TS::ptr()->get_rng();
if(b)
{
//randomize ROI
src_roicols = mat1.cols-1; //start
src_roirows = mat1.rows-1;
dst_roicols=dst.cols-1;
dst_roirows=dst.rows-1;
src1x = 1;
src1y = 1;
dstx = 1;
dsty =1;
}else
{
src_roicols = mat1.cols;
src_roirows = mat1.rows;
dst_roicols=dst.cols;
dst_roirows=dst.rows;
src1x = 0;
src1y = 0;
dstx = 0;
dsty = 0;
};
mat1_roi = mat1(Rect(src1x,src1y,src_roicols,src_roirows));
dst_roi = dst(Rect(dstx,dsty,dst_roicols,dst_roirows));
}
};
TEST_P(Resize, Mat)
{
#ifndef PRINT_KERNEL_RUN_TIME
double totalcputick=0;
double totalgputick=0;
double totalgputick_kernel=0;
double t0=0;
double t1=0;
double t2=0;
for(int k=0;k<2;k++){
totalcputick=0;
totalgputick=0;
totalgputick_kernel=0;
for(int j = 0; j < LOOP_TIMES+1; j ++)
{
Has_roi(k);
t0 = (double)cvGetTickCount();//cpu start
cv::resize(mat1_roi, dst_roi, dsize, fx, fy, interpolation);
t0 = (double)cvGetTickCount() - t0;//cpu end
t1 = (double)cvGetTickCount();//gpu start1
gdst_whole = dst;
gdst = gdst_whole(Rect(dstx,dsty,dst_roicols,dst_roirows));
gmat1 = mat1_roi;
t2=(double)cvGetTickCount();//kernel
cv::ocl::resize(gmat1, gdst, dsize, fx, fy, interpolation);
t2 = (double)cvGetTickCount() - t2;//kernel
cv::Mat cpu_dst;
gdst_whole.download (cpu_dst);//download
t1 = (double)cvGetTickCount() - t1;//gpu end1
if(j == 0)
continue;
totalgputick=t1+totalgputick;
totalcputick=t0+totalcputick;
totalgputick_kernel=t2+totalgputick_kernel;
}
if(k==0){cout<<"no roi\n";}else{cout<<"with roi\n";};
cout << "average cpu runtime is " << totalcputick/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
cout << "average gpu runtime is " << totalgputick/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
cout << "average gpu runtime without data transfer is " << totalgputick_kernel/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
}
#else
for(int j = 0; j < 2; j ++)
{
Has_roi(j);
gdst_whole = dst;
gdst = gdst_whole(Rect(dstx,dsty,dst_roicols,dst_roirows));
gmat1 = mat1_roi;
if(j==0){cout<<"no roi:";}else{cout<<"\nwith roi:";};
cv::ocl::resize(gmat1, gdst, dsize, fx, fy, interpolation);
};
#endif
}
/////////////////////////////////////////////////////////////////////////////////////////////////
//threshold
PARAM_TEST_CASE(Threshold, MatType, ThreshOp)
{
int type;
int threshOp;
//src mat
cv::Mat mat1;
cv::Mat dst;
// set up roi
int roicols;
int roirows;
int src1x;
int src1y;
int dstx;
int dsty;
//src mat with roi
cv::Mat mat1_roi;
cv::Mat dst_roi;
std::vector<cv::ocl::Info> oclinfo;
//ocl dst mat for testing
cv::ocl::oclMat gdst_whole;
//ocl mat with roi
cv::ocl::oclMat gmat1;
cv::ocl::oclMat gdst;
virtual void SetUp()
{
type = GET_PARAM(0);
threshOp = GET_PARAM(1);
cv::RNG& rng = TS::ptr()->get_rng();
cv::Size size(MWIDTH, MHEIGHT);
mat1 = randomMat(rng, size, type, 5, 16, false);
dst = randomMat(rng, size, type, 5, 16, false);
int devnums = getDevice(oclinfo);
CV_Assert(devnums > 0);
//if you want to use undefault device, set it here
//setDevice(oclinfo[0]);
cv::ocl::setBinpath(CLBINPATH);
}
void Has_roi(int b)
{
//cv::RNG& rng = TS::ptr()->get_rng();
if(b)
{
//randomize ROI
roicols = mat1.cols-1; //start
roirows = mat1.rows-1;
src1x = 1;
src1y = 1;
dstx = 1;
dsty =1;
}else
{
roicols = mat1.cols;
roirows = mat1.rows;
src1x = 0;
src1y = 0;
dstx = 0;
dsty = 0;
};
mat1_roi = mat1(Rect(src1x,src1y,roicols,roirows));
dst_roi = dst(Rect(dstx,dsty,roicols,roirows));
}
};
TEST_P(Threshold, Mat)
{
#ifndef PRINT_KERNEL_RUN_TIME
double totalcputick=0;
double totalgputick=0;
double totalgputick_kernel=0;
double t0=0;
double t1=0;
double t2=0;
for(int k=0;k<2;k++){
totalcputick=0;
totalgputick=0;
totalgputick_kernel=0;
for(int j = 0; j < LOOP_TIMES+1; j ++)
{
Has_roi(k);
double maxVal = randomDouble(20.0, 127.0);
double thresh = randomDouble(0.0, maxVal);
t0 = (double)cvGetTickCount();//cpu start
cv::threshold(mat1_roi, dst_roi, thresh, maxVal, threshOp);
t0 = (double)cvGetTickCount() - t0;//cpu end
t1 = (double)cvGetTickCount();//gpu start1
gdst_whole = dst;
gdst = gdst_whole(Rect(dstx,dsty,roicols,roirows));
gmat1 = mat1_roi;
t2=(double)cvGetTickCount();//kernel
cv::ocl::threshold(gmat1, gdst, thresh, maxVal, threshOp);
t2 = (double)cvGetTickCount() - t2;//kernel
cv::Mat cpu_dst;
gdst_whole.download (cpu_dst);//download
t1 = (double)cvGetTickCount() - t1;//gpu end1
if(j == 0)
continue;
totalgputick=t1+totalgputick;
totalcputick=t0+totalcputick;
totalgputick_kernel=t2+totalgputick_kernel;
}
if(k==0){cout<<"no roi\n";}else{cout<<"with roi\n";};
cout << "average cpu runtime is " << totalcputick/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
cout << "average gpu runtime is " << totalgputick/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
cout << "average gpu runtime without data transfer is " << totalgputick_kernel/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
}
#else
for(int j = 0; j < 2; j ++)
{
Has_roi(j);
double maxVal = randomDouble(20.0, 127.0);
double thresh = randomDouble(0.0, maxVal);
gdst_whole = dst;
gdst = gdst_whole(Rect(dstx,dsty,roicols,roirows));
gmat1 = mat1_roi;
if(j==0){cout<<"no roi:";}else{cout<<"\nwith roi:";};
cv::ocl::threshold(gmat1, gdst, thresh, maxVal, threshOp);
};
#endif
}
///////////////////////////////////////////////////////////////////////////////////////////////////
//meanShift
PARAM_TEST_CASE(meanShiftTestBase, MatType, MatType, int, int, cv::TermCriteria)
{
int type, typeCoor;
int sp, sr;
cv::TermCriteria crit;
//src mat
cv::Mat src;
cv::Mat dst;
cv::Mat dstCoor;
//set up roi
int roicols;
int roirows;
int srcx;
int srcy;
int dstx;
int dsty;
//src mat with roi
cv::Mat src_roi;
cv::Mat dst_roi;
cv::Mat dstCoor_roi;
//ocl dst mat
cv::ocl::oclMat gdst;
cv::ocl::oclMat gdstCoor;
std::vector<cv::ocl::Info> oclinfo;
//ocl mat with roi
cv::ocl::oclMat gsrc_roi;
cv::ocl::oclMat gdst_roi;
cv::ocl::oclMat gdstCoor_roi;
virtual void SetUp()
{
type = GET_PARAM(0);
typeCoor = GET_PARAM(1);
sp = GET_PARAM(2);
sr = GET_PARAM(3);
crit = GET_PARAM(4);
cv::RNG &rng = TS::ptr()->get_rng();
// MWIDTH=256, MHEIGHT=256. defined in utility.hpp
cv::Size size = cv::Size(MWIDTH, MHEIGHT);
src = randomMat(rng, size, type, 5, 16, false);
dst = randomMat(rng, size, type, 5, 16, false);
dstCoor = randomMat(rng, size, typeCoor, 5, 16, false);
int devnums = getDevice(oclinfo);
CV_Assert(devnums > 0);
//if you want to use undefault device, set it here
//setDevice(oclinfo[0]);
cv::ocl::setBinpath(CLBINPATH);
}
void Has_roi(int b)
{
if(b)
{
//randomize ROI
roicols = src.cols - 1;
roirows = src.rows - 1;
srcx = 1;
srcy = 1;
dstx = 1;
dsty = 1;
}else
{
roicols = src.cols;
roirows = src.rows;
srcx = 0;
srcy = 0;
dstx = 0;
dsty = 0;
};
src_roi = src(Rect(srcx, srcy, roicols, roirows));
dst_roi = dst(Rect(dstx, dsty, roicols, roirows));
dstCoor_roi = dstCoor(Rect(dstx, dsty, roicols, roirows));
gdst = dst;
gdstCoor = dstCoor;
}
};
/////////////////////////meanShiftFiltering/////////////////////////////
struct meanShiftFiltering : meanShiftTestBase {};
TEST_P(meanShiftFiltering, Mat)
{
#ifndef PRINT_KERNEL_RUN_TIME
double t1=0;
double t2=0;
for(int k=0;k<2;k++)
{
double totalgputick=0;
double totalgputick_kernel=0;
for(int j = 0; j < LOOP_TIMES+1; j ++)
{
Has_roi(k);
t1 = (double)cvGetTickCount();//gpu start1
gsrc_roi = src_roi;
gdst_roi = gdst(Rect(dstx, dsty, roicols, roirows)); //gdst_roi
t2=(double)cvGetTickCount();//kernel
cv::ocl::meanShiftFiltering(gsrc_roi, gdst_roi, sp, sr, crit);
t2 = (double)cvGetTickCount() - t2;//kernel
cv::Mat cpu_gdst;
gdst.download(cpu_gdst);//download
t1 = (double)cvGetTickCount() - t1;//gpu end1
if(j == 0)
continue;
totalgputick=t1+totalgputick;
totalgputick_kernel=t2+totalgputick_kernel;
}
if(k==0){cout<<"no roi\n";}else{cout<<"with roi\n";};
cout << "average gpu runtime is " << totalgputick/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
cout << "average gpu runtime without data transfer is " << totalgputick_kernel/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
}
#else
for(int j = 0; j < 2; j ++)
{
Has_roi(j);
gsrc_roi = src_roi;
gdst_roi = gdst(Rect(dstx, dsty, roicols, roirows)); //gdst_roi
if(j==0){cout<<"no roi:";}else{cout<<"\nwith roi:";};
cv::ocl::meanShiftFiltering(gsrc_roi, gdst_roi, sp, sr, crit);
};
#endif
}
///////////////////////////meanShiftProc//////////////////////////////////
struct meanShiftProc : meanShiftTestBase {};
TEST_P(meanShiftProc, Mat)
{
#ifndef PRINT_KERNEL_RUN_TIME
double t1=0;
double t2=0;
for(int k=0;k<2;k++)
{
double totalgputick=0;
double totalgputick_kernel=0;
for(int j = 0; j < LOOP_TIMES+1; j ++)
{
Has_roi(k);
t1 = (double)cvGetTickCount();//gpu start1
gsrc_roi = src_roi;
gdst_roi = gdst(Rect(dstx, dsty, roicols, roirows)); //gdst_roi
gdstCoor_roi = gdstCoor(Rect(dstx, dsty, roicols, roirows));
t2=(double)cvGetTickCount();//kernel
cv::ocl::meanShiftProc(gsrc_roi, gdst_roi, gdstCoor_roi, sp, sr, crit);
t2 = (double)cvGetTickCount() - t2;//kernel
cv::Mat cpu_gdstCoor;
gdstCoor.download(cpu_gdstCoor);//download
t1 = (double)cvGetTickCount() - t1;//gpu end1
if(j == 0)
continue;
totalgputick=t1+totalgputick;
totalgputick_kernel=t2+totalgputick_kernel;
}
if(k==0){cout<<"no roi\n";}else{cout<<"with roi\n";};
cout << "average gpu runtime is " << totalgputick/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
cout << "average gpu runtime without data transfer is " << totalgputick_kernel/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
}
#else
for(int j = 0; j < 2; j ++)
{
Has_roi(j);
gsrc_roi = src_roi;
gdst_roi = gdst(Rect(dstx, dsty, roicols, roirows)); //gdst_roi
gdstCoor_roi = gdstCoor(Rect(dstx, dsty, roicols, roirows));
if(j==0){cout<<"no roi:";}else{cout<<"\nwith roi:";};
cv::ocl::meanShiftProc(gsrc_roi, gdst_roi, gdstCoor_roi, sp, sr, crit);
};
#endif
}
//************test*******************
INSTANTIATE_TEST_CASE_P(ImgprocTestBase, equalizeHist, Combine(
ONE_TYPE(CV_8UC1),
NULL_TYPE,
ONE_TYPE(CV_8UC1),
NULL_TYPE,
NULL_TYPE,
Values(false))); // Values(false) is the reserved parameter
//INSTANTIATE_TEST_CASE_P(ImgprocTestBase, bilateralFilter, Combine(
// ONE_TYPE(CV_8UC1),
// NULL_TYPE,
// ONE_TYPE(CV_8UC1),
// NULL_TYPE,
// NULL_TYPE,
// Values(false))); // Values(false) is the reserved parameter
//
//
//INSTANTIATE_TEST_CASE_P(ImgprocTestBase, CopyMakeBorder, Combine(
// Values(CV_8UC1, CV_8UC4/*, CV_32SC1*/),
// NULL_TYPE,
// Values(CV_8UC1,CV_8UC4/*,CV_32SC1*/),
// NULL_TYPE,
// NULL_TYPE,
// Values(false))); // Values(false) is the reserved parameter
//INSTANTIATE_TEST_CASE_P(ImgprocTestBase, cornerMinEigenVal, Combine(
// Values(CV_8UC1,CV_32FC1),
// NULL_TYPE,
// ONE_TYPE(CV_32FC1),
// NULL_TYPE,
// NULL_TYPE,
// Values(false))); // Values(false) is the reserved parameter
//
//INSTANTIATE_TEST_CASE_P(ImgprocTestBase, cornerHarris, Combine(
// Values(CV_8UC1,CV_32FC1),
// NULL_TYPE,
// ONE_TYPE(CV_32FC1),
// NULL_TYPE,
// NULL_TYPE,
// Values(false))); // Values(false) is the reserved parameter
INSTANTIATE_TEST_CASE_P(ImgprocTestBase, integral, Combine(
ONE_TYPE(CV_8UC1),
NULL_TYPE,
ONE_TYPE(CV_32SC1),
ONE_TYPE(CV_32FC1),
NULL_TYPE,
Values(false))); // Values(false) is the reserved parameter
INSTANTIATE_TEST_CASE_P(Imgproc, WarpAffine, Combine(
Values(CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4),
Values((MatType)cv::INTER_NEAREST, (MatType)cv::INTER_LINEAR,
(MatType)cv::INTER_CUBIC, (MatType)(cv::INTER_NEAREST | cv::WARP_INVERSE_MAP),
(MatType)(cv::INTER_LINEAR | cv::WARP_INVERSE_MAP), (MatType)(cv::INTER_CUBIC | cv::WARP_INVERSE_MAP))));
INSTANTIATE_TEST_CASE_P(Imgproc, WarpPerspective, Combine
(Values(CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4),
Values((MatType)cv::INTER_NEAREST, (MatType)cv::INTER_LINEAR,
(MatType)cv::INTER_CUBIC, (MatType)(cv::INTER_NEAREST | cv::WARP_INVERSE_MAP),
(MatType)(cv::INTER_LINEAR | cv::WARP_INVERSE_MAP), (MatType)(cv::INTER_CUBIC | cv::WARP_INVERSE_MAP))));
INSTANTIATE_TEST_CASE_P(Imgproc, Resize, Combine(
Values(CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4), Values(cv::Size()),
Values(0.5/*, 1.5, 2*/), Values(0.5/*, 1.5, 2*/), Values((MatType)cv::INTER_NEAREST, (MatType)cv::INTER_LINEAR)));
INSTANTIATE_TEST_CASE_P(Imgproc, Threshold, Combine(
Values(CV_8UC1, CV_32FC1), Values(ThreshOp(cv::THRESH_BINARY),
ThreshOp(cv::THRESH_BINARY_INV), ThreshOp(cv::THRESH_TRUNC),
ThreshOp(cv::THRESH_TOZERO), ThreshOp(cv::THRESH_TOZERO_INV))));
INSTANTIATE_TEST_CASE_P(Imgproc, meanShiftFiltering, Combine(
ONE_TYPE(CV_8UC4),
ONE_TYPE(CV_16SC2),//it is no use in meanShiftFiltering
Values(5),
Values(6),
Values(cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 5, 1))
));
INSTANTIATE_TEST_CASE_P(Imgproc, meanShiftProc, Combine(
ONE_TYPE(CV_8UC4),
ONE_TYPE(CV_16SC2),
Values(5),
Values(6),
Values(cv::TermCriteria(cv::TermCriteria::COUNT+cv::TermCriteria::EPS, 5, 1))
));
#endif // HAVE_OPENCL