opencv/modules/core/src/precomp.hpp

416 lines
15 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_PRECOMP_H__
#define __OPENCV_PRECOMP_H__
#if defined _MSC_VER && _MSC_VER >= 1200
// disable warnings related to inline functions
#pragma warning( disable: 4251 4711 4710 4514 )
#endif
#ifdef HAVE_CONFIG_H
#include <cvconfig.h>
#endif
#include "opencv2/core/core.hpp"
#include "opencv2/core/core_c.h"
#include "opencv2/core/internal.hpp"
#include <assert.h>
#include <ctype.h>
#include <float.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define CV_MEMCPY_CHAR( dst, src, len ) \
{ \
size_t _icv_memcpy_i_, _icv_memcpy_len_ = (len); \
char* _icv_memcpy_dst_ = (char*)(dst); \
const char* _icv_memcpy_src_ = (const char*)(src); \
\
for( _icv_memcpy_i_ = 0; _icv_memcpy_i_ < _icv_memcpy_len_; _icv_memcpy_i_++ ) \
_icv_memcpy_dst_[_icv_memcpy_i_] = _icv_memcpy_src_[_icv_memcpy_i_]; \
}
#define CV_MEMCPY_INT( dst, src, len ) \
{ \
size_t _icv_memcpy_i_, _icv_memcpy_len_ = (len); \
int* _icv_memcpy_dst_ = (int*)(dst); \
const int* _icv_memcpy_src_ = (const int*)(src); \
assert( ((size_t)_icv_memcpy_src_&(sizeof(int)-1)) == 0 && \
((size_t)_icv_memcpy_dst_&(sizeof(int)-1)) == 0 ); \
\
for(_icv_memcpy_i_=0;_icv_memcpy_i_<_icv_memcpy_len_;_icv_memcpy_i_++) \
_icv_memcpy_dst_[_icv_memcpy_i_] = _icv_memcpy_src_[_icv_memcpy_i_];\
}
#define CV_MEMCPY_AUTO( dst, src, len ) \
{ \
size_t _icv_memcpy_i_, _icv_memcpy_len_ = (len); \
char* _icv_memcpy_dst_ = (char*)(dst); \
const char* _icv_memcpy_src_ = (const char*)(src); \
if( (_icv_memcpy_len_ & (sizeof(int)-1)) == 0 ) \
{ \
assert( ((size_t)_icv_memcpy_src_&(sizeof(int)-1)) == 0 && \
((size_t)_icv_memcpy_dst_&(sizeof(int)-1)) == 0 ); \
for( _icv_memcpy_i_ = 0; _icv_memcpy_i_ < _icv_memcpy_len_; \
_icv_memcpy_i_+=sizeof(int) ) \
{ \
*(int*)(_icv_memcpy_dst_+_icv_memcpy_i_) = \
*(const int*)(_icv_memcpy_src_+_icv_memcpy_i_); \
} \
} \
else \
{ \
for(_icv_memcpy_i_ = 0; _icv_memcpy_i_ < _icv_memcpy_len_; _icv_memcpy_i_++)\
_icv_memcpy_dst_[_icv_memcpy_i_] = _icv_memcpy_src_[_icv_memcpy_i_]; \
} \
}
#define CV_ZERO_CHAR( dst, len ) \
{ \
size_t _icv_memcpy_i_, _icv_memcpy_len_ = (len); \
char* _icv_memcpy_dst_ = (char*)(dst); \
\
for( _icv_memcpy_i_ = 0; _icv_memcpy_i_ < _icv_memcpy_len_; _icv_memcpy_i_++ ) \
_icv_memcpy_dst_[_icv_memcpy_i_] = '\0'; \
}
#define CV_ZERO_INT( dst, len ) \
{ \
size_t _icv_memcpy_i_, _icv_memcpy_len_ = (len); \
int* _icv_memcpy_dst_ = (int*)(dst); \
assert( ((size_t)_icv_memcpy_dst_&(sizeof(int)-1)) == 0 ); \
\
for(_icv_memcpy_i_=0;_icv_memcpy_i_<_icv_memcpy_len_;_icv_memcpy_i_++) \
_icv_memcpy_dst_[_icv_memcpy_i_] = 0; \
}
namespace cv
{
// -128.f ... 255.f
extern const float g_8x32fTab[];
#define CV_8TO32F(x) cv::g_8x32fTab[(x)+128]
extern const ushort g_8x16uSqrTab[];
#define CV_SQR_8U(x) cv::g_8x16uSqrTab[(x)+255]
extern const char* g_HersheyGlyphs[];
extern const uchar g_Saturate8u[];
#define CV_FAST_CAST_8U(t) (assert(-256 <= (t) && (t) <= 512), cv::g_Saturate8u[(t)+256])
#define CV_MIN_8U(a,b) ((a) - CV_FAST_CAST_8U((a) - (b)))
#define CV_MAX_8U(a,b) ((a) + CV_FAST_CAST_8U((b) - (a)))
typedef void (*CopyMaskFunc)(const Mat& src, Mat& dst, const Mat& mask);
extern CopyMaskFunc g_copyMaskFuncTab[];
static inline CopyMaskFunc getCopyMaskFunc(int esz)
{
CV_Assert( (unsigned)esz <= 32U );
CopyMaskFunc func = g_copyMaskFuncTab[esz];
CV_Assert( func != 0 );
return func;
}
#if defined WIN32 || defined _WIN32
void deleteThreadAllocData();
void deleteThreadRNGData();
#endif
template<typename T1, typename T2=T1, typename T3=T1> struct OpAdd
{
typedef T1 type1;
typedef T2 type2;
typedef T3 rtype;
T3 operator ()(T1 a, T2 b) const { return saturate_cast<T3>(a + b); }
};
template<typename T1, typename T2=T1, typename T3=T1> struct OpSub
{
typedef T1 type1;
typedef T2 type2;
typedef T3 rtype;
T3 operator ()(T1 a, T2 b) const { return saturate_cast<T3>(a - b); }
};
template<typename T1, typename T2=T1, typename T3=T1> struct OpRSub
{
typedef T1 type1;
typedef T2 type2;
typedef T3 rtype;
T3 operator ()(T1 a, T2 b) const { return saturate_cast<T3>(b - a); }
};
template<typename T1, typename T2=T1, typename T3=T1> struct OpMul
{
typedef T1 type1;
typedef T2 type2;
typedef T3 rtype;
T3 operator ()(T1 a, T2 b) const { return saturate_cast<T3>(a * b); }
};
template<typename T1, typename T2=T1, typename T3=T1> struct OpDiv
{
typedef T1 type1;
typedef T2 type2;
typedef T3 rtype;
T3 operator ()(T1 a, T2 b) const { return saturate_cast<T3>(a / b); }
};
template<typename T> struct OpMin
{
typedef T type1;
typedef T type2;
typedef T rtype;
T operator ()(T a, T b) const { return std::min(a, b); }
};
template<typename T> struct OpMax
{
typedef T type1;
typedef T type2;
typedef T rtype;
T operator ()(T a, T b) const { return std::max(a, b); }
};
inline Size getContinuousSize( const Mat& m1, int widthScale=1 )
{
return m1.isContinuous() ? Size(m1.cols*m1.rows*widthScale, 1) :
Size(m1.cols*widthScale, m1.rows);
}
inline Size getContinuousSize( const Mat& m1, const Mat& m2, int widthScale=1 )
{
return (m1.flags & m2.flags & Mat::CONTINUOUS_FLAG) != 0 ?
Size(m1.cols*m1.rows*widthScale, 1) : Size(m1.cols*widthScale, m1.rows);
}
inline Size getContinuousSize( const Mat& m1, const Mat& m2,
const Mat& m3, int widthScale=1 )
{
return (m1.flags & m2.flags & m3.flags & Mat::CONTINUOUS_FLAG) != 0 ?
Size(m1.cols*m1.rows*widthScale, 1) : Size(m1.cols*widthScale, m1.rows);
}
inline Size getContinuousSize( const Mat& m1, const Mat& m2,
const Mat& m3, const Mat& m4,
int widthScale=1 )
{
return (m1.flags & m2.flags & m3.flags & m4.flags & Mat::CONTINUOUS_FLAG) != 0 ?
Size(m1.cols*m1.rows*widthScale, 1) : Size(m1.cols*widthScale, m1.rows);
}
inline Size getContinuousSize( const Mat& m1, const Mat& m2,
const Mat& m3, const Mat& m4,
const Mat& m5, int widthScale=1 )
{
return (m1.flags & m2.flags & m3.flags & m4.flags & m5.flags & Mat::CONTINUOUS_FLAG) != 0 ?
Size(m1.cols*m1.rows*widthScale, 1) : Size(m1.cols*widthScale, m1.rows);
}
struct NoVec
{
int operator()(const void*, const void*, void*, int) const { return 0; }
};
template<class Op, class VecOp> static void
binaryOpC1_( const Mat& srcmat1, const Mat& srcmat2, Mat& dstmat )
{
Op op; VecOp vecOp;
typedef typename Op::type1 T1;
typedef typename Op::type2 T2;
typedef typename Op::rtype DT;
const T1* src1 = (const T1*)srcmat1.data;
const T2* src2 = (const T2*)srcmat2.data;
DT* dst = (DT*)dstmat.data;
size_t step1 = srcmat1.step/sizeof(src1[0]);
size_t step2 = srcmat2.step/sizeof(src2[0]);
size_t step = dstmat.step/sizeof(dst[0]);
Size size = getContinuousSize( srcmat1, srcmat2, dstmat, dstmat.channels() );
if( size.width == 1 )
{
for( ; size.height--; src1 += step1, src2 += step2, dst += step )
dst[0] = op( src1[0], src2[0] );
return;
}
for( ; size.height--; src1 += step1, src2 += step2, dst += step )
{
int x;
x = vecOp(src1, src2, dst, size.width);
for( ; x <= size.width - 4; x += 4 )
{
DT f0, f1;
f0 = op( src1[x], src2[x] );
f1 = op( src1[x+1], src2[x+1] );
dst[x] = f0;
dst[x+1] = f1;
f0 = op(src1[x+2], src2[x+2]);
f1 = op(src1[x+3], src2[x+3]);
dst[x+2] = f0;
dst[x+3] = f1;
}
for( ; x < size.width; x++ )
dst[x] = op( src1[x], src2[x] );
}
}
typedef void (*BinaryFunc)(const Mat& src1, const Mat& src2, Mat& dst);
template<class Op> static void
binarySOpCn_( const Mat& srcmat, Mat& dstmat, const Scalar& _scalar )
{
Op op;
typedef typename Op::type1 T;
typedef typename Op::type2 WT;
typedef typename Op::rtype DT;
const T* src0 = (const T*)srcmat.data;
DT* dst0 = (DT*)dstmat.data;
size_t step1 = srcmat.step/sizeof(src0[0]);
size_t step = dstmat.step/sizeof(dst0[0]);
int cn = dstmat.channels();
Size size = getContinuousSize( srcmat, dstmat, cn );
WT scalar[12];
scalarToRawData(_scalar, scalar, CV_MAKETYPE(DataType<WT>::depth,cn), 12);
for( ; size.height--; src0 += step1, dst0 += step )
{
int i, len = size.width;
const T* src = src0;
T* dst = dst0;
for( ; (len -= 12) >= 0; dst += 12, src += 12 )
{
DT t0 = op(src[0], scalar[0]);
DT t1 = op(src[1], scalar[1]);
dst[0] = t0; dst[1] = t1;
t0 = op(src[2], scalar[2]);
t1 = op(src[3], scalar[3]);
dst[2] = t0; dst[3] = t1;
t0 = op(src[4], scalar[4]);
t1 = op(src[5], scalar[5]);
dst[4] = t0; dst[5] = t1;
t0 = op(src[6], scalar[6]);
t1 = op(src[7], scalar[7]);
dst[6] = t0; dst[7] = t1;
t0 = op(src[8], scalar[8]);
t1 = op(src[9], scalar[9]);
dst[8] = t0; dst[9] = t1;
t0 = op(src[10], scalar[10]);
t1 = op(src[11], scalar[11]);
dst[10] = t0; dst[11] = t1;
}
for( (len) += 12, i = 0; i < (len); i++ )
dst[i] = op((WT)src[i], scalar[i]);
}
}
template<class Op> static void
binarySOpC1_( const Mat& srcmat, Mat& dstmat, double _scalar )
{
Op op;
typedef typename Op::type1 T;
typedef typename Op::type2 WT;
typedef typename Op::rtype DT;
WT scalar = saturate_cast<WT>(_scalar);
const T* src = (const T*)srcmat.data;
DT* dst = (DT*)dstmat.data;
size_t step1 = srcmat.step/sizeof(src[0]);
size_t step = dstmat.step/sizeof(dst[0]);
Size size = srcmat.size();
size.width *= srcmat.channels();
if( srcmat.isContinuous() && dstmat.isContinuous() )
{
size.width *= size.height;
size.height = 1;
}
for( ; size.height--; src += step1, dst += step )
{
int x;
for( x = 0; x <= size.width - 4; x += 4 )
{
DT f0 = op( src[x], scalar );
DT f1 = op( src[x+1], scalar );
dst[x] = f0;
dst[x+1] = f1;
f0 = op( src[x+2], scalar );
f1 = op( src[x+3], scalar );
dst[x+2] = f0;
dst[x+3] = f1;
}
for( ; x < size.width; x++ )
dst[x] = op( src[x], scalar );
}
}
typedef void (*BinarySFuncCn)(const Mat& src1, Mat& dst, const Scalar& scalar);
typedef void (*BinarySFuncC1)(const Mat& src1, Mat& dst, double scalar);
}
#endif /*_CXCORE_INTERNAL_H_*/