2012-10-17 09:12:04 +02:00
|
|
|
#include "perf_precomp.hpp"
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
using namespace testing;
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////
|
|
|
|
// HOG
|
|
|
|
|
|
|
|
DEF_PARAM_TEST_1(Image, string);
|
|
|
|
|
|
|
|
PERF_TEST_P(Image, ObjDetect_HOG, Values<string>("gpu/hog/road.png"))
|
|
|
|
{
|
|
|
|
cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE);
|
|
|
|
ASSERT_FALSE(img.empty());
|
|
|
|
|
|
|
|
std::vector<cv::Rect> found_locations;
|
|
|
|
|
|
|
|
if (PERF_RUN_GPU())
|
|
|
|
{
|
|
|
|
cv::gpu::GpuMat d_img(img);
|
|
|
|
|
|
|
|
cv::gpu::HOGDescriptor d_hog;
|
|
|
|
d_hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector());
|
|
|
|
|
|
|
|
d_hog.detectMultiScale(d_img, found_locations);
|
|
|
|
|
|
|
|
TEST_CYCLE()
|
|
|
|
{
|
|
|
|
d_hog.detectMultiScale(d_img, found_locations);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
cv::HOGDescriptor hog;
|
|
|
|
hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector());
|
|
|
|
|
|
|
|
hog.detectMultiScale(img, found_locations);
|
|
|
|
|
|
|
|
TEST_CYCLE()
|
|
|
|
{
|
|
|
|
hog.detectMultiScale(img, found_locations);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
SANITY_CHECK(found_locations);
|
|
|
|
}
|
|
|
|
|
|
|
|
//===========test for CalTech data =============//
|
|
|
|
DEF_PARAM_TEST_1(HOG, string);
|
|
|
|
|
|
|
|
PERF_TEST_P(HOG, CalTech, Values<string>("gpu/caltech/image_00000009_0.png", "gpu/caltech/image_00000032_0.png",
|
|
|
|
"gpu/caltech/image_00000165_0.png", "gpu/caltech/image_00000261_0.png", "gpu/caltech/image_00000469_0.png",
|
|
|
|
"gpu/caltech/image_00000527_0.png", "gpu/caltech/image_00000574_0.png"))
|
|
|
|
{
|
|
|
|
cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE);
|
|
|
|
ASSERT_FALSE(img.empty());
|
|
|
|
|
|
|
|
std::vector<cv::Rect> found_locations;
|
|
|
|
|
|
|
|
if (PERF_RUN_GPU())
|
|
|
|
{
|
|
|
|
cv::gpu::GpuMat d_img(img);
|
|
|
|
|
|
|
|
cv::gpu::HOGDescriptor d_hog;
|
|
|
|
d_hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector());
|
|
|
|
|
|
|
|
d_hog.detectMultiScale(d_img, found_locations);
|
|
|
|
|
|
|
|
TEST_CYCLE()
|
|
|
|
{
|
|
|
|
d_hog.detectMultiScale(d_img, found_locations);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
cv::HOGDescriptor hog;
|
|
|
|
hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector());
|
|
|
|
|
|
|
|
hog.detectMultiScale(img, found_locations);
|
|
|
|
|
|
|
|
TEST_CYCLE()
|
|
|
|
{
|
|
|
|
hog.detectMultiScale(img, found_locations);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
SANITY_CHECK(found_locations);
|
|
|
|
}
|
|
|
|
|
2012-10-03 14:36:00 +02:00
|
|
|
//================================================= ICF SoftCascade =================================================//
|
|
|
|
|
2012-09-21 14:10:40 +02:00
|
|
|
typedef pair<string, string> pair_string;
|
|
|
|
DEF_PARAM_TEST_1(SoftCascade, pair_string);
|
|
|
|
|
2012-10-03 14:36:00 +02:00
|
|
|
|
|
|
|
// struct SoftCascadeTest : public perf::TestBaseWithParam<roi_fixture_t>
|
|
|
|
// {
|
|
|
|
// typedef cv::gpu::SoftCascade::Detection detection_t;
|
|
|
|
// static cv::Rect getFromTable(int idx)
|
|
|
|
// {
|
|
|
|
// static const cv::Rect rois[] =
|
|
|
|
// {
|
|
|
|
// cv::Rect( 65, 20, 35, 80),
|
|
|
|
// cv::Rect( 95, 35, 45, 40),
|
|
|
|
// cv::Rect( 45, 35, 45, 40),
|
|
|
|
// cv::Rect( 25, 27, 50, 45),
|
|
|
|
// cv::Rect(100, 50, 45, 40),
|
|
|
|
|
|
|
|
// cv::Rect( 60, 30, 45, 40),
|
|
|
|
// cv::Rect( 40, 55, 50, 40),
|
|
|
|
// cv::Rect( 48, 37, 72, 80),
|
|
|
|
// cv::Rect( 48, 32, 85, 58),
|
|
|
|
// cv::Rect( 48, 0, 32, 27)
|
|
|
|
// };
|
|
|
|
|
|
|
|
// return rois[idx];
|
|
|
|
// }
|
|
|
|
|
|
|
|
// static std::string itoa(long i)
|
|
|
|
// {
|
|
|
|
// static char s[65];
|
|
|
|
// sprintf(s, "%ld", i);
|
|
|
|
// return std::string(s);
|
|
|
|
// }
|
|
|
|
|
|
|
|
// static std::string getImageName(int level)
|
|
|
|
// {
|
|
|
|
// time_t rawtime;
|
|
|
|
// struct tm * timeinfo;
|
|
|
|
// char buffer [80];
|
|
|
|
|
|
|
|
// time ( &rawtime );
|
|
|
|
// timeinfo = localtime ( &rawtime );
|
|
|
|
|
|
|
|
// strftime (buffer,80,"%Y-%m-%d--%H-%M-%S",timeinfo);
|
|
|
|
// return "gpu_rec_level_" + itoa(level)+ "_" + std::string(buffer) + ".png";
|
|
|
|
// }
|
|
|
|
|
|
|
|
// static void print(std::ostream &out, const detection_t& d)
|
|
|
|
// {
|
|
|
|
// out << "\x1b[32m[ detection]\x1b[0m ("
|
|
|
|
// << std::setw(4) << d.x
|
|
|
|
// << " "
|
|
|
|
// << std::setw(4) << d.y
|
|
|
|
// << ") ("
|
|
|
|
// << std::setw(4) << d.w
|
|
|
|
// << " "
|
|
|
|
// << std::setw(4) << d.h
|
|
|
|
// << ") "
|
|
|
|
// << std::setw(12) << d.confidence
|
|
|
|
// << std::endl;
|
|
|
|
// }
|
|
|
|
|
|
|
|
// static void printTotal(std::ostream &out, int detbytes)
|
|
|
|
// {
|
|
|
|
// out << "\x1b[32m[ ]\x1b[0m Total detections " << (detbytes / sizeof(detection_t)) << std::endl;
|
|
|
|
// }
|
|
|
|
|
|
|
|
// static void writeResult(const cv::Mat& result, const int level)
|
|
|
|
// {
|
|
|
|
// std::string path = cv::tempfile(getImageName(level).c_str());
|
|
|
|
// cv::imwrite(path, result);
|
|
|
|
// std::cout << "\x1b[32m" << "[ ]" << std::endl << "[ stored in]"<< "\x1b[0m" << path << std::endl;
|
|
|
|
// }
|
|
|
|
// };
|
|
|
|
|
|
|
|
typedef std::tr1::tuple<std::string, std::string> fixture_t;
|
|
|
|
typedef perf::TestBaseWithParam<fixture_t> SoftCascadeTest;
|
|
|
|
|
|
|
|
PERF_TEST_P(SoftCascadeTest, detect,
|
|
|
|
testing::Combine(
|
|
|
|
testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")),
|
|
|
|
testing::Values(std::string("cv/cascadeandhog/bahnhof/image_00000000_0.png"))))
|
2012-09-21 14:10:40 +02:00
|
|
|
{
|
|
|
|
if (runOnGpu)
|
|
|
|
{
|
2012-10-08 13:37:28 +02:00
|
|
|
cv::Mat cpu = readImage (GET_PARAM(1));
|
2012-09-21 14:10:40 +02:00
|
|
|
ASSERT_FALSE(cpu.empty());
|
|
|
|
cv::gpu::GpuMat colored(cpu);
|
|
|
|
|
|
|
|
cv::gpu::SoftCascade cascade;
|
2012-10-08 13:37:28 +02:00
|
|
|
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath(GET_PARAM(0))));
|
2012-09-21 14:10:40 +02:00
|
|
|
|
2012-10-08 13:37:28 +02:00
|
|
|
cv::gpu::GpuMat objectBoxes(1, 16384, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1), trois;
|
|
|
|
rois.setTo(1);
|
|
|
|
cv::gpu::transpose(rois, trois);
|
2012-10-11 14:27:23 +02:00
|
|
|
|
|
|
|
cv::gpu::GpuMat curr = objectBoxes;
|
|
|
|
cascade.detectMultiScale(colored, trois, curr);
|
2012-09-21 14:10:40 +02:00
|
|
|
|
|
|
|
TEST_CYCLE()
|
|
|
|
{
|
2012-10-11 14:27:23 +02:00
|
|
|
curr = objectBoxes;
|
|
|
|
cascade.detectMultiScale(colored, trois, curr);
|
2012-09-21 14:10:40 +02:00
|
|
|
}
|
2012-10-08 13:37:28 +02:00
|
|
|
}
|
|
|
|
else
|
2012-09-21 14:10:40 +02:00
|
|
|
{
|
2012-10-08 13:37:28 +02:00
|
|
|
cv::Mat colored = readImage(GET_PARAM(1));
|
2012-09-21 14:10:40 +02:00
|
|
|
ASSERT_FALSE(colored.empty());
|
|
|
|
|
|
|
|
cv::SoftCascade cascade;
|
2012-10-08 13:37:28 +02:00
|
|
|
ASSERT_TRUE(cascade.load(getDataPath(GET_PARAM(0))));
|
|
|
|
|
|
|
|
std::vector<cv::Rect> rois;
|
2012-09-21 14:10:40 +02:00
|
|
|
|
2012-10-08 13:37:28 +02:00
|
|
|
typedef cv::SoftCascade::Detection Detection;
|
|
|
|
std::vector<Detection>objectBoxes;
|
2012-09-21 14:10:40 +02:00
|
|
|
cascade.detectMultiScale(colored, rois, objectBoxes);
|
|
|
|
|
|
|
|
TEST_CYCLE()
|
|
|
|
{
|
|
|
|
cascade.detectMultiScale(colored, rois, objectBoxes);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2012-10-17 09:12:04 +02:00
|
|
|
|
2012-10-03 14:36:00 +02:00
|
|
|
static cv::Rect getFromTable(int idx)
|
|
|
|
{
|
|
|
|
static const cv::Rect rois[] =
|
|
|
|
{
|
|
|
|
cv::Rect( 65, 20, 35, 80),
|
|
|
|
cv::Rect( 95, 35, 45, 40),
|
|
|
|
cv::Rect( 45, 35, 45, 40),
|
|
|
|
cv::Rect( 25, 27, 50, 45),
|
|
|
|
cv::Rect(100, 50, 45, 40),
|
|
|
|
|
|
|
|
cv::Rect( 60, 30, 45, 40),
|
|
|
|
cv::Rect( 40, 55, 50, 40),
|
|
|
|
cv::Rect( 48, 37, 72, 80),
|
|
|
|
cv::Rect( 48, 32, 85, 58),
|
|
|
|
cv::Rect( 48, 0, 32, 27)
|
|
|
|
};
|
|
|
|
|
|
|
|
return rois[idx];
|
|
|
|
}
|
|
|
|
|
|
|
|
typedef std::tr1::tuple<std::string, std::string, int> roi_fixture_t;
|
|
|
|
typedef perf::TestBaseWithParam<roi_fixture_t> SoftCascadeTestRoi;
|
|
|
|
|
|
|
|
PERF_TEST_P(SoftCascadeTestRoi, detectInRoi,
|
|
|
|
testing::Combine(
|
|
|
|
testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")),
|
|
|
|
testing::Values(std::string("cv/cascadeandhog/bahnhof/image_00000000_0.png")),
|
|
|
|
testing::Range(0, 5)))
|
|
|
|
{
|
|
|
|
if (runOnGpu)
|
|
|
|
{
|
|
|
|
cv::Mat cpu = readImage (GET_PARAM(1));
|
|
|
|
ASSERT_FALSE(cpu.empty());
|
|
|
|
cv::gpu::GpuMat colored(cpu);
|
|
|
|
|
|
|
|
cv::gpu::SoftCascade cascade;
|
|
|
|
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath(GET_PARAM(0))));
|
|
|
|
|
|
|
|
cv::gpu::GpuMat objectBoxes(1, 16384 * 20, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1);
|
|
|
|
rois.setTo(0);
|
|
|
|
|
|
|
|
int nroi = GET_PARAM(2);
|
|
|
|
cv::RNG rng;
|
|
|
|
for (int i = 0; i < nroi; ++i)
|
|
|
|
{
|
|
|
|
cv::Rect r = getFromTable(rng(10));
|
|
|
|
cv::gpu::GpuMat sub(rois, r);
|
|
|
|
sub.setTo(1);
|
|
|
|
}
|
|
|
|
|
2012-10-08 13:37:28 +02:00
|
|
|
cv::gpu::GpuMat trois;
|
|
|
|
cv::gpu::transpose(rois, trois);
|
|
|
|
|
2012-10-03 14:36:00 +02:00
|
|
|
cv::gpu::GpuMat curr = objectBoxes;
|
2012-10-08 13:37:28 +02:00
|
|
|
cascade.detectMultiScale(colored, trois, curr);
|
2012-10-03 14:36:00 +02:00
|
|
|
|
|
|
|
TEST_CYCLE()
|
|
|
|
{
|
|
|
|
curr = objectBoxes;
|
2012-10-08 13:37:28 +02:00
|
|
|
cascade.detectMultiScale(colored, trois, curr);
|
2012-10-03 14:36:00 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
FAIL();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P(SoftCascadeTestRoi, detectEachRoi,
|
|
|
|
testing::Combine(
|
|
|
|
testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")),
|
|
|
|
testing::Values(std::string("cv/cascadeandhog/bahnhof/image_00000000_0.png")),
|
|
|
|
testing::Range(0, 10)))
|
|
|
|
{
|
|
|
|
if (runOnGpu)
|
|
|
|
{
|
|
|
|
cv::Mat cpu = readImage (GET_PARAM(1));
|
|
|
|
ASSERT_FALSE(cpu.empty());
|
|
|
|
cv::gpu::GpuMat colored(cpu);
|
|
|
|
|
|
|
|
cv::gpu::SoftCascade cascade;
|
|
|
|
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath(GET_PARAM(0))));
|
|
|
|
|
|
|
|
cv::gpu::GpuMat objectBoxes(1, 16384 * 20, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1);
|
|
|
|
rois.setTo(0);
|
|
|
|
|
|
|
|
int idx = GET_PARAM(2);
|
|
|
|
cv::Rect r = getFromTable(idx);
|
|
|
|
cv::gpu::GpuMat sub(rois, r);
|
|
|
|
sub.setTo(1);
|
|
|
|
|
|
|
|
cv::gpu::GpuMat curr = objectBoxes;
|
2012-10-08 13:37:28 +02:00
|
|
|
cv::gpu::GpuMat trois;
|
|
|
|
cv::gpu::transpose(rois, trois);
|
|
|
|
|
|
|
|
cascade.detectMultiScale(colored, trois, curr);
|
2012-10-03 14:36:00 +02:00
|
|
|
|
|
|
|
TEST_CYCLE()
|
|
|
|
{
|
|
|
|
curr = objectBoxes;
|
|
|
|
cascade.detectMultiScale(colored, rois, curr);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
FAIL();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2012-10-17 09:12:04 +02:00
|
|
|
///////////////////////////////////////////////////////////////
|
|
|
|
// HaarClassifier
|
|
|
|
|
|
|
|
typedef pair<string, string> pair_string;
|
|
|
|
DEF_PARAM_TEST_1(ImageAndCascade, pair_string);
|
|
|
|
|
|
|
|
PERF_TEST_P(ImageAndCascade, ObjDetect_HaarClassifier,
|
|
|
|
Values<pair_string>(make_pair("gpu/haarcascade/group_1_640x480_VGA.pgm", "gpu/perf/haarcascade_frontalface_alt.xml")))
|
|
|
|
{
|
|
|
|
cv::Mat img = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
|
|
|
|
ASSERT_FALSE(img.empty());
|
|
|
|
|
|
|
|
if (PERF_RUN_GPU())
|
|
|
|
{
|
|
|
|
cv::gpu::CascadeClassifier_GPU d_cascade;
|
|
|
|
ASSERT_TRUE(d_cascade.load(perf::TestBase::getDataPath(GetParam().second)));
|
|
|
|
|
|
|
|
cv::gpu::GpuMat d_img(img);
|
|
|
|
cv::gpu::GpuMat d_objects_buffer;
|
|
|
|
|
|
|
|
d_cascade.detectMultiScale(d_img, d_objects_buffer);
|
|
|
|
|
|
|
|
TEST_CYCLE()
|
|
|
|
{
|
|
|
|
d_cascade.detectMultiScale(d_img, d_objects_buffer);
|
|
|
|
}
|
|
|
|
|
|
|
|
GPU_SANITY_CHECK(d_objects_buffer);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
cv::CascadeClassifier cascade;
|
|
|
|
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/perf/haarcascade_frontalface_alt.xml")));
|
|
|
|
|
|
|
|
std::vector<cv::Rect> rects;
|
|
|
|
|
|
|
|
cascade.detectMultiScale(img, rects);
|
|
|
|
|
|
|
|
TEST_CYCLE()
|
|
|
|
{
|
|
|
|
cascade.detectMultiScale(img, rects);
|
|
|
|
}
|
|
|
|
|
|
|
|
CPU_SANITY_CHECK(rects);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////
|
|
|
|
// LBP cascade
|
|
|
|
|
|
|
|
PERF_TEST_P(ImageAndCascade, ObjDetect_LBPClassifier,
|
|
|
|
Values<pair_string>(make_pair("gpu/haarcascade/group_1_640x480_VGA.pgm", "gpu/lbpcascade/lbpcascade_frontalface.xml")))
|
|
|
|
{
|
|
|
|
cv::Mat img = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
|
|
|
|
ASSERT_FALSE(img.empty());
|
|
|
|
|
2012-10-08 13:37:28 +02:00
|
|
|
if (runOnGpu)
|
2012-10-17 09:12:04 +02:00
|
|
|
{
|
|
|
|
cv::gpu::CascadeClassifier_GPU d_cascade;
|
|
|
|
ASSERT_TRUE(d_cascade.load(perf::TestBase::getDataPath(GetParam().second)));
|
|
|
|
|
|
|
|
cv::gpu::GpuMat d_img(img);
|
|
|
|
cv::gpu::GpuMat d_gpu_rects;
|
|
|
|
|
|
|
|
d_cascade.detectMultiScale(d_img, d_gpu_rects);
|
|
|
|
|
|
|
|
TEST_CYCLE()
|
|
|
|
{
|
|
|
|
d_cascade.detectMultiScale(d_img, d_gpu_rects);
|
|
|
|
}
|
|
|
|
|
|
|
|
GPU_SANITY_CHECK(d_gpu_rects);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
cv::CascadeClassifier cascade;
|
|
|
|
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/lbpcascade/lbpcascade_frontalface.xml")));
|
|
|
|
|
|
|
|
std::vector<cv::Rect> rects;
|
|
|
|
|
|
|
|
cascade.detectMultiScale(img, rects);
|
|
|
|
|
|
|
|
TEST_CYCLE()
|
|
|
|
{
|
|
|
|
cascade.detectMultiScale(img, rects);
|
|
|
|
}
|
|
|
|
|
|
|
|
CPU_SANITY_CHECK(rects);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace
|