opencv/modules/gpu/perf/perf_objdetect.cpp

422 lines
12 KiB
C++
Raw Normal View History

2012-10-17 09:12:04 +02:00
#include "perf_precomp.hpp"
using namespace std;
using namespace testing;
namespace {
///////////////////////////////////////////////////////////////
// HOG
DEF_PARAM_TEST_1(Image, string);
PERF_TEST_P(Image, ObjDetect_HOG, Values<string>("gpu/hog/road.png"))
{
cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
std::vector<cv::Rect> found_locations;
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_img(img);
cv::gpu::HOGDescriptor d_hog;
d_hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector());
d_hog.detectMultiScale(d_img, found_locations);
TEST_CYCLE()
{
d_hog.detectMultiScale(d_img, found_locations);
}
}
else
{
cv::HOGDescriptor hog;
hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector());
hog.detectMultiScale(img, found_locations);
TEST_CYCLE()
{
hog.detectMultiScale(img, found_locations);
}
}
SANITY_CHECK(found_locations);
}
//===========test for CalTech data =============//
DEF_PARAM_TEST_1(HOG, string);
PERF_TEST_P(HOG, CalTech, Values<string>("gpu/caltech/image_00000009_0.png", "gpu/caltech/image_00000032_0.png",
"gpu/caltech/image_00000165_0.png", "gpu/caltech/image_00000261_0.png", "gpu/caltech/image_00000469_0.png",
"gpu/caltech/image_00000527_0.png", "gpu/caltech/image_00000574_0.png"))
{
cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
std::vector<cv::Rect> found_locations;
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_img(img);
cv::gpu::HOGDescriptor d_hog;
d_hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector());
d_hog.detectMultiScale(d_img, found_locations);
TEST_CYCLE()
{
d_hog.detectMultiScale(d_img, found_locations);
}
}
else
{
cv::HOGDescriptor hog;
hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector());
hog.detectMultiScale(img, found_locations);
TEST_CYCLE()
{
hog.detectMultiScale(img, found_locations);
}
}
SANITY_CHECK(found_locations);
}
//================================================= ICF SoftCascade =================================================//
typedef pair<string, string> pair_string;
DEF_PARAM_TEST_1(SoftCascade, pair_string);
// struct SoftCascadeTest : public perf::TestBaseWithParam<roi_fixture_t>
// {
// typedef cv::gpu::SoftCascade::Detection detection_t;
// static cv::Rect getFromTable(int idx)
// {
// static const cv::Rect rois[] =
// {
// cv::Rect( 65, 20, 35, 80),
// cv::Rect( 95, 35, 45, 40),
// cv::Rect( 45, 35, 45, 40),
// cv::Rect( 25, 27, 50, 45),
// cv::Rect(100, 50, 45, 40),
// cv::Rect( 60, 30, 45, 40),
// cv::Rect( 40, 55, 50, 40),
// cv::Rect( 48, 37, 72, 80),
// cv::Rect( 48, 32, 85, 58),
// cv::Rect( 48, 0, 32, 27)
// };
// return rois[idx];
// }
// static std::string itoa(long i)
// {
// static char s[65];
// sprintf(s, "%ld", i);
// return std::string(s);
// }
// static std::string getImageName(int level)
// {
// time_t rawtime;
// struct tm * timeinfo;
// char buffer [80];
// time ( &rawtime );
// timeinfo = localtime ( &rawtime );
// strftime (buffer,80,"%Y-%m-%d--%H-%M-%S",timeinfo);
// return "gpu_rec_level_" + itoa(level)+ "_" + std::string(buffer) + ".png";
// }
// static void print(std::ostream &out, const detection_t& d)
// {
// out << "\x1b[32m[ detection]\x1b[0m ("
// << std::setw(4) << d.x
// << " "
// << std::setw(4) << d.y
// << ") ("
// << std::setw(4) << d.w
// << " "
// << std::setw(4) << d.h
// << ") "
// << std::setw(12) << d.confidence
// << std::endl;
// }
// static void printTotal(std::ostream &out, int detbytes)
// {
// out << "\x1b[32m[ ]\x1b[0m Total detections " << (detbytes / sizeof(detection_t)) << std::endl;
// }
// static void writeResult(const cv::Mat& result, const int level)
// {
// std::string path = cv::tempfile(getImageName(level).c_str());
// cv::imwrite(path, result);
// std::cout << "\x1b[32m" << "[ ]" << std::endl << "[ stored in]"<< "\x1b[0m" << path << std::endl;
// }
// };
typedef std::tr1::tuple<std::string, std::string> fixture_t;
typedef perf::TestBaseWithParam<fixture_t> SoftCascadeTest;
PERF_TEST_P(SoftCascadeTest, detect,
testing::Combine(
testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")),
testing::Values(std::string("cv/cascadeandhog/bahnhof/image_00000000_0.png"))))
{
if (runOnGpu)
{
cv::Mat cpu = readImage (GET_PARAM(1));
ASSERT_FALSE(cpu.empty());
cv::gpu::GpuMat colored(cpu);
cv::gpu::SoftCascade cascade;
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath(GET_PARAM(0))));
cv::gpu::GpuMat objectBoxes(1, 16384, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1), trois;
rois.setTo(1);
cv::gpu::transpose(rois, trois);
2012-10-11 14:27:23 +02:00
cv::gpu::GpuMat curr = objectBoxes;
cascade.detectMultiScale(colored, trois, curr);
TEST_CYCLE()
{
2012-10-11 14:27:23 +02:00
curr = objectBoxes;
cascade.detectMultiScale(colored, trois, curr);
}
}
else
{
cv::Mat colored = readImage(GET_PARAM(1));
ASSERT_FALSE(colored.empty());
cv::SoftCascade cascade;
ASSERT_TRUE(cascade.load(getDataPath(GET_PARAM(0))));
std::vector<cv::Rect> rois;
typedef cv::SoftCascade::Detection Detection;
std::vector<Detection>objectBoxes;
cascade.detectMultiScale(colored, rois, objectBoxes);
TEST_CYCLE()
{
cascade.detectMultiScale(colored, rois, objectBoxes);
}
}
}
2012-10-17 09:12:04 +02:00
static cv::Rect getFromTable(int idx)
{
static const cv::Rect rois[] =
{
cv::Rect( 65, 20, 35, 80),
cv::Rect( 95, 35, 45, 40),
cv::Rect( 45, 35, 45, 40),
cv::Rect( 25, 27, 50, 45),
cv::Rect(100, 50, 45, 40),
cv::Rect( 60, 30, 45, 40),
cv::Rect( 40, 55, 50, 40),
cv::Rect( 48, 37, 72, 80),
cv::Rect( 48, 32, 85, 58),
cv::Rect( 48, 0, 32, 27)
};
return rois[idx];
}
typedef std::tr1::tuple<std::string, std::string, int> roi_fixture_t;
typedef perf::TestBaseWithParam<roi_fixture_t> SoftCascadeTestRoi;
PERF_TEST_P(SoftCascadeTestRoi, detectInRoi,
testing::Combine(
testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")),
testing::Values(std::string("cv/cascadeandhog/bahnhof/image_00000000_0.png")),
testing::Range(0, 5)))
{
if (runOnGpu)
{
cv::Mat cpu = readImage (GET_PARAM(1));
ASSERT_FALSE(cpu.empty());
cv::gpu::GpuMat colored(cpu);
cv::gpu::SoftCascade cascade;
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath(GET_PARAM(0))));
cv::gpu::GpuMat objectBoxes(1, 16384 * 20, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1);
rois.setTo(0);
int nroi = GET_PARAM(2);
cv::RNG rng;
for (int i = 0; i < nroi; ++i)
{
cv::Rect r = getFromTable(rng(10));
cv::gpu::GpuMat sub(rois, r);
sub.setTo(1);
}
cv::gpu::GpuMat trois;
cv::gpu::transpose(rois, trois);
cv::gpu::GpuMat curr = objectBoxes;
cascade.detectMultiScale(colored, trois, curr);
TEST_CYCLE()
{
curr = objectBoxes;
cascade.detectMultiScale(colored, trois, curr);
}
}
else
{
FAIL();
}
}
PERF_TEST_P(SoftCascadeTestRoi, detectEachRoi,
testing::Combine(
testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")),
testing::Values(std::string("cv/cascadeandhog/bahnhof/image_00000000_0.png")),
testing::Range(0, 10)))
{
if (runOnGpu)
{
cv::Mat cpu = readImage (GET_PARAM(1));
ASSERT_FALSE(cpu.empty());
cv::gpu::GpuMat colored(cpu);
cv::gpu::SoftCascade cascade;
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath(GET_PARAM(0))));
cv::gpu::GpuMat objectBoxes(1, 16384 * 20, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1);
rois.setTo(0);
int idx = GET_PARAM(2);
cv::Rect r = getFromTable(idx);
cv::gpu::GpuMat sub(rois, r);
sub.setTo(1);
cv::gpu::GpuMat curr = objectBoxes;
cv::gpu::GpuMat trois;
cv::gpu::transpose(rois, trois);
cascade.detectMultiScale(colored, trois, curr);
TEST_CYCLE()
{
curr = objectBoxes;
cascade.detectMultiScale(colored, rois, curr);
}
}
else
{
FAIL();
}
}
2012-10-17 09:12:04 +02:00
///////////////////////////////////////////////////////////////
// HaarClassifier
typedef pair<string, string> pair_string;
DEF_PARAM_TEST_1(ImageAndCascade, pair_string);
PERF_TEST_P(ImageAndCascade, ObjDetect_HaarClassifier,
Values<pair_string>(make_pair("gpu/haarcascade/group_1_640x480_VGA.pgm", "gpu/perf/haarcascade_frontalface_alt.xml")))
{
cv::Mat img = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
if (PERF_RUN_GPU())
{
cv::gpu::CascadeClassifier_GPU d_cascade;
ASSERT_TRUE(d_cascade.load(perf::TestBase::getDataPath(GetParam().second)));
cv::gpu::GpuMat d_img(img);
cv::gpu::GpuMat d_objects_buffer;
d_cascade.detectMultiScale(d_img, d_objects_buffer);
TEST_CYCLE()
{
d_cascade.detectMultiScale(d_img, d_objects_buffer);
}
GPU_SANITY_CHECK(d_objects_buffer);
}
else
{
cv::CascadeClassifier cascade;
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/perf/haarcascade_frontalface_alt.xml")));
std::vector<cv::Rect> rects;
cascade.detectMultiScale(img, rects);
TEST_CYCLE()
{
cascade.detectMultiScale(img, rects);
}
CPU_SANITY_CHECK(rects);
}
}
///////////////////////////////////////////////////////////////
// LBP cascade
PERF_TEST_P(ImageAndCascade, ObjDetect_LBPClassifier,
Values<pair_string>(make_pair("gpu/haarcascade/group_1_640x480_VGA.pgm", "gpu/lbpcascade/lbpcascade_frontalface.xml")))
{
cv::Mat img = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
if (runOnGpu)
2012-10-17 09:12:04 +02:00
{
cv::gpu::CascadeClassifier_GPU d_cascade;
ASSERT_TRUE(d_cascade.load(perf::TestBase::getDataPath(GetParam().second)));
cv::gpu::GpuMat d_img(img);
cv::gpu::GpuMat d_gpu_rects;
d_cascade.detectMultiScale(d_img, d_gpu_rects);
TEST_CYCLE()
{
d_cascade.detectMultiScale(d_img, d_gpu_rects);
}
GPU_SANITY_CHECK(d_gpu_rects);
}
else
{
cv::CascadeClassifier cascade;
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/lbpcascade/lbpcascade_frontalface.xml")));
std::vector<cv::Rect> rects;
cascade.detectMultiScale(img, rects);
TEST_CYCLE()
{
cascade.detectMultiScale(img, rects);
}
CPU_SANITY_CHECK(rects);
}
}
} // namespace