2011-07-04 20:58:57 +02:00
|
|
|
/**
|
|
|
|
* @file MatchTemplate_Demo.cpp
|
|
|
|
* @brief Sample code to use the function MatchTemplate
|
|
|
|
* @author OpenCV team
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "opencv2/highgui/highgui.hpp"
|
|
|
|
#include "opencv2/imgproc/imgproc.hpp"
|
|
|
|
#include <iostream>
|
|
|
|
#include <stdio.h>
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
using namespace cv;
|
|
|
|
|
|
|
|
/// Global Variables
|
|
|
|
Mat img; Mat templ; Mat result;
|
|
|
|
char* image_window = "Source Image";
|
|
|
|
char* result_window = "Result window";
|
|
|
|
|
|
|
|
int match_method;
|
|
|
|
int max_Trackbar = 5;
|
|
|
|
|
|
|
|
/// Function Headers
|
|
|
|
void MatchingMethod( int, void* );
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @function main
|
|
|
|
*/
|
|
|
|
int main( int argc, char** argv )
|
|
|
|
{
|
|
|
|
/// Load image and template
|
|
|
|
img = imread( argv[1], 1 );
|
|
|
|
templ = imread( argv[2], 1 );
|
|
|
|
|
|
|
|
/// Create windows
|
|
|
|
namedWindow( image_window, CV_WINDOW_AUTOSIZE );
|
|
|
|
namedWindow( result_window, CV_WINDOW_AUTOSIZE );
|
2012-10-17 09:12:04 +02:00
|
|
|
|
2011-07-04 20:58:57 +02:00
|
|
|
/// Create Trackbar
|
|
|
|
char* trackbar_label = "Method: \n 0: SQDIFF \n 1: SQDIFF NORMED \n 2: TM CCORR \n 3: TM CCORR NORMED \n 4: TM COEFF \n 5: TM COEFF NORMED";
|
|
|
|
createTrackbar( trackbar_label, image_window, &match_method, max_Trackbar, MatchingMethod );
|
|
|
|
|
|
|
|
MatchingMethod( 0, 0 );
|
|
|
|
|
|
|
|
waitKey(0);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @function MatchingMethod
|
|
|
|
* @brief Trackbar callback
|
|
|
|
*/
|
|
|
|
void MatchingMethod( int, void* )
|
|
|
|
{
|
|
|
|
/// Source image to display
|
|
|
|
Mat img_display;
|
|
|
|
img.copyTo( img_display );
|
2012-10-17 09:12:04 +02:00
|
|
|
|
2011-07-04 20:58:57 +02:00
|
|
|
/// Create the result matrix
|
|
|
|
int result_cols = img.cols - templ.cols + 1;
|
2012-10-17 09:12:04 +02:00
|
|
|
int result_rows = img.rows - templ.rows + 1;
|
|
|
|
|
2011-07-04 20:58:57 +02:00
|
|
|
result.create( result_cols, result_rows, CV_32FC1 );
|
|
|
|
|
|
|
|
/// Do the Matching and Normalize
|
|
|
|
matchTemplate( img, templ, result, match_method );
|
|
|
|
normalize( result, result, 0, 1, NORM_MINMAX, -1, Mat() );
|
|
|
|
|
|
|
|
/// Localizing the best match with minMaxLoc
|
|
|
|
double minVal; double maxVal; Point minLoc; Point maxLoc;
|
|
|
|
Point matchLoc;
|
2012-10-17 09:12:04 +02:00
|
|
|
|
2011-07-04 20:58:57 +02:00
|
|
|
minMaxLoc( result, &minVal, &maxVal, &minLoc, &maxLoc, Mat() );
|
|
|
|
|
|
|
|
|
|
|
|
/// For SQDIFF and SQDIFF_NORMED, the best matches are lower values. For all the other methods, the higher the better
|
|
|
|
if( match_method == CV_TM_SQDIFF || match_method == CV_TM_SQDIFF_NORMED )
|
|
|
|
{ matchLoc = minLoc; }
|
2012-10-17 09:12:04 +02:00
|
|
|
else
|
2011-07-04 20:58:57 +02:00
|
|
|
{ matchLoc = maxLoc; }
|
|
|
|
|
|
|
|
/// Show me what you got
|
2012-10-17 09:12:04 +02:00
|
|
|
rectangle( img_display, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 );
|
|
|
|
rectangle( result, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 );
|
2011-07-04 20:58:57 +02:00
|
|
|
|
|
|
|
imshow( image_window, img_display );
|
|
|
|
imshow( result_window, result );
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|