2011-05-23 11:31:02 +00:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
2011-06-09 10:16:10 +00:00
|
|
|
//M*/
|
|
|
|
#include <algorithm>
|
|
|
|
#include "autocalib.hpp"
|
|
|
|
#include "motion_estimators.hpp"
|
|
|
|
#include "util.hpp"
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
using namespace cv;
|
|
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
CameraParams::CameraParams() : focal(1), R(Mat::eye(3, 3, CV_64F)), t(Mat::zeros(3, 1, CV_64F)) {}
|
|
|
|
|
|
|
|
CameraParams::CameraParams(const CameraParams &other) { *this = other; }
|
|
|
|
|
|
|
|
const CameraParams& CameraParams::operator =(const CameraParams &other)
|
|
|
|
{
|
|
|
|
focal = other.focal;
|
|
|
|
R = other.R.clone();
|
|
|
|
t = other.t.clone();
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
struct IncDistance
|
|
|
|
{
|
|
|
|
IncDistance(vector<int> &dists) : dists(&dists[0]) {}
|
|
|
|
void operator ()(const GraphEdge &edge) { dists[edge.to] = dists[edge.from] + 1; }
|
|
|
|
int* dists;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
struct CalcRotation
|
|
|
|
{
|
|
|
|
CalcRotation(int num_images, const vector<MatchesInfo> &pairwise_matches, vector<CameraParams> &cameras)
|
|
|
|
: num_images(num_images), pairwise_matches(&pairwise_matches[0]), cameras(&cameras[0]) {}
|
|
|
|
|
|
|
|
void operator ()(const GraphEdge &edge)
|
|
|
|
{
|
|
|
|
int pair_idx = edge.from * num_images + edge.to;
|
|
|
|
|
|
|
|
double f_from = cameras[edge.from].focal;
|
|
|
|
double f_to = cameras[edge.to].focal;
|
|
|
|
|
|
|
|
Mat K_from = Mat::eye(3, 3, CV_64F);
|
|
|
|
K_from.at<double>(0, 0) = f_from;
|
|
|
|
K_from.at<double>(1, 1) = f_from;
|
|
|
|
|
|
|
|
Mat K_to = Mat::eye(3, 3, CV_64F);
|
|
|
|
K_to.at<double>(0, 0) = f_to;
|
|
|
|
K_to.at<double>(1, 1) = f_to;
|
|
|
|
|
|
|
|
Mat R = K_from.inv() * pairwise_matches[pair_idx].H.inv() * K_to;
|
|
|
|
cameras[edge.to].R = cameras[edge.from].R * R;
|
|
|
|
}
|
|
|
|
|
|
|
|
int num_images;
|
|
|
|
const MatchesInfo* pairwise_matches;
|
|
|
|
CameraParams* cameras;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
void HomographyBasedEstimator::estimate(const vector<ImageFeatures> &features, const vector<MatchesInfo> &pairwise_matches,
|
|
|
|
vector<CameraParams> &cameras)
|
|
|
|
{
|
|
|
|
const int num_images = static_cast<int>(features.size());
|
|
|
|
|
|
|
|
// Estimate focal length and set it for all cameras
|
|
|
|
vector<double> focals;
|
|
|
|
estimateFocal(features, pairwise_matches, focals);
|
|
|
|
cameras.resize(num_images);
|
|
|
|
for (int i = 0; i < num_images; ++i)
|
|
|
|
cameras[i].focal = focals[i];
|
|
|
|
|
|
|
|
// Restore global motion
|
|
|
|
Graph span_tree;
|
|
|
|
vector<int> span_tree_centers;
|
|
|
|
findMaxSpanningTree(num_images, pairwise_matches, span_tree, span_tree_centers);
|
|
|
|
span_tree.walkBreadthFirst(span_tree_centers[0], CalcRotation(num_images, pairwise_matches, cameras));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
void BundleAdjuster::estimate(const vector<ImageFeatures> &features, const vector<MatchesInfo> &pairwise_matches,
|
|
|
|
vector<CameraParams> &cameras)
|
|
|
|
{
|
|
|
|
num_images_ = static_cast<int>(features.size());
|
|
|
|
features_ = &features[0];
|
|
|
|
pairwise_matches_ = &pairwise_matches[0];
|
|
|
|
|
|
|
|
// Prepare focals and rotations
|
|
|
|
cameras_.create(num_images_ * 4, 1, CV_64F);
|
|
|
|
SVD svd;
|
|
|
|
for (int i = 0; i < num_images_; ++i)
|
|
|
|
{
|
|
|
|
cameras_.at<double>(i * 4, 0) = cameras[i].focal;
|
|
|
|
|
|
|
|
svd(cameras[i].R, SVD::FULL_UV);
|
|
|
|
Mat R = svd.u * svd.vt;
|
|
|
|
if (determinant(R) < 0)
|
|
|
|
R *= -1;
|
|
|
|
|
|
|
|
Mat rvec;
|
|
|
|
Rodrigues(R, rvec); CV_Assert(rvec.type() == CV_32F);
|
|
|
|
cameras_.at<double>(i * 4 + 1, 0) = rvec.at<float>(0, 0);
|
|
|
|
cameras_.at<double>(i * 4 + 2, 0) = rvec.at<float>(1, 0);
|
|
|
|
cameras_.at<double>(i * 4 + 3, 0) = rvec.at<float>(2, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Select only consistent image pairs for futher adjustment
|
|
|
|
edges_.clear();
|
|
|
|
for (int i = 0; i < num_images_ - 1; ++i)
|
|
|
|
{
|
|
|
|
for (int j = i + 1; j < num_images_; ++j)
|
|
|
|
{
|
|
|
|
const MatchesInfo& matches_info = pairwise_matches_[i * num_images_ + j];
|
|
|
|
if (matches_info.confidence > conf_thresh_)
|
|
|
|
edges_.push_back(make_pair(i, j));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Compute number of correspondences
|
|
|
|
total_num_matches_ = 0;
|
|
|
|
for (size_t i = 0; i < edges_.size(); ++i)
|
|
|
|
total_num_matches_ += static_cast<int>(pairwise_matches[edges_[i].first * num_images_ + edges_[i].second].num_inliers);
|
|
|
|
|
|
|
|
CvLevMarq solver(num_images_ * 4, total_num_matches_ * 3,
|
|
|
|
cvTermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 1000, DBL_EPSILON));
|
|
|
|
|
|
|
|
CvMat matParams = cameras_;
|
|
|
|
cvCopy(&matParams, solver.param);
|
|
|
|
|
|
|
|
int count = 0;
|
|
|
|
for(;;)
|
|
|
|
{
|
|
|
|
const CvMat* _param = 0;
|
|
|
|
CvMat* _J = 0;
|
|
|
|
CvMat* _err = 0;
|
|
|
|
|
|
|
|
bool proceed = solver.update(_param, _J, _err);
|
|
|
|
|
|
|
|
cvCopy( _param, &matParams );
|
|
|
|
|
|
|
|
if( !proceed || !_err )
|
|
|
|
break;
|
|
|
|
|
|
|
|
if( _J )
|
|
|
|
{
|
|
|
|
calcJacobian();
|
|
|
|
CvMat matJ = J_;
|
|
|
|
cvCopy( &matJ, _J );
|
|
|
|
}
|
|
|
|
|
|
|
|
if (_err)
|
|
|
|
{
|
|
|
|
calcError(err_);
|
|
|
|
LOG(".");
|
|
|
|
count++;
|
|
|
|
CvMat matErr = err_;
|
|
|
|
cvCopy( &matErr, _err );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
LOGLN("");
|
|
|
|
LOGLN("Bundle adjustment, final error: " << sqrt(err_.dot(err_)));
|
|
|
|
LOGLN("Bundle adjustment, iterations done: " << count);
|
|
|
|
|
|
|
|
// Obtain global motion
|
|
|
|
for (int i = 0; i < num_images_; ++i)
|
|
|
|
{
|
|
|
|
cameras[i].focal = cameras_.at<double>(i * 4, 0);
|
|
|
|
Mat rvec(3, 1, CV_64F);
|
|
|
|
rvec.at<double>(0, 0) = cameras_.at<double>(i * 4 + 1, 0);
|
|
|
|
rvec.at<double>(1, 0) = cameras_.at<double>(i * 4 + 2, 0);
|
|
|
|
rvec.at<double>(2, 0) = cameras_.at<double>(i * 4 + 3, 0);
|
|
|
|
Rodrigues(rvec, cameras[i].R);
|
|
|
|
Mat Mf;
|
|
|
|
cameras[i].R.convertTo(Mf, CV_32F);
|
|
|
|
cameras[i].R = Mf;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Normalize motion to center image
|
|
|
|
Graph span_tree;
|
|
|
|
vector<int> span_tree_centers;
|
|
|
|
findMaxSpanningTree(num_images_, pairwise_matches, span_tree, span_tree_centers);
|
|
|
|
Mat R_inv = cameras[span_tree_centers[0]].R.inv();
|
|
|
|
for (int i = 0; i < num_images_; ++i)
|
|
|
|
cameras[i].R = R_inv * cameras[i].R;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void BundleAdjuster::calcError(Mat &err)
|
|
|
|
{
|
|
|
|
err.create(total_num_matches_ * 3, 1, CV_64F);
|
|
|
|
|
|
|
|
int match_idx = 0;
|
|
|
|
for (size_t edge_idx = 0; edge_idx < edges_.size(); ++edge_idx)
|
|
|
|
{
|
|
|
|
int i = edges_[edge_idx].first;
|
|
|
|
int j = edges_[edge_idx].second;
|
|
|
|
double f1 = cameras_.at<double>(i * 4, 0);
|
|
|
|
double f2 = cameras_.at<double>(j * 4, 0);
|
|
|
|
double R1[9], R2[9];
|
|
|
|
Mat R1_(3, 3, CV_64F, R1), R2_(3, 3, CV_64F, R2);
|
|
|
|
Mat rvec(3, 1, CV_64F);
|
|
|
|
rvec.at<double>(0, 0) = cameras_.at<double>(i * 4 + 1, 0);
|
|
|
|
rvec.at<double>(1, 0) = cameras_.at<double>(i * 4 + 2, 0);
|
|
|
|
rvec.at<double>(2, 0) = cameras_.at<double>(i * 4 + 3, 0);
|
|
|
|
Rodrigues(rvec, R1_); CV_Assert(R1_.type() == CV_64F);
|
|
|
|
rvec.at<double>(0, 0) = cameras_.at<double>(j * 4 + 1, 0);
|
|
|
|
rvec.at<double>(1, 0) = cameras_.at<double>(j * 4 + 2, 0);
|
|
|
|
rvec.at<double>(2, 0) = cameras_.at<double>(j * 4 + 3, 0);
|
|
|
|
Rodrigues(rvec, R2_); CV_Assert(R2_.type() == CV_64F);
|
|
|
|
|
|
|
|
const ImageFeatures& features1 = features_[i];
|
|
|
|
const ImageFeatures& features2 = features_[j];
|
|
|
|
const MatchesInfo& matches_info = pairwise_matches_[i * num_images_ + j];
|
|
|
|
|
|
|
|
for (size_t k = 0; k < matches_info.matches.size(); ++k)
|
|
|
|
{
|
|
|
|
if (!matches_info.inliers_mask[k])
|
|
|
|
continue;
|
|
|
|
|
|
|
|
const DMatch& m = matches_info.matches[k];
|
|
|
|
|
|
|
|
Point2d kp1 = features1.keypoints[m.queryIdx].pt;
|
|
|
|
kp1.x -= 0.5 * features1.img_size.width;
|
|
|
|
kp1.y -= 0.5 * features1.img_size.height;
|
|
|
|
Point2d kp2 = features2.keypoints[m.trainIdx].pt;
|
|
|
|
kp2.x -= 0.5 * features2.img_size.width;
|
|
|
|
kp2.y -= 0.5 * features2.img_size.height;
|
|
|
|
double len1 = sqrt(kp1.x * kp1.x + kp1.y * kp1.y + f1 * f1);
|
|
|
|
double len2 = sqrt(kp2.x * kp2.x + kp2.y * kp2.y + f2 * f2);
|
|
|
|
Point3d p1(kp1.x / len1, kp1.y / len1, f1 / len1);
|
|
|
|
Point3d p2(kp2.x / len2, kp2.y / len2, f2 / len2);
|
|
|
|
|
|
|
|
Point3d d1(p1.x * R1[0] + p1.y * R1[1] + p1.z * R1[2],
|
|
|
|
p1.x * R1[3] + p1.y * R1[4] + p1.z * R1[5],
|
|
|
|
p1.x * R1[6] + p1.y * R1[7] + p1.z * R1[8]);
|
|
|
|
Point3d d2(p2.x * R2[0] + p2.y * R2[1] + p2.z * R2[2],
|
|
|
|
p2.x * R2[3] + p2.y * R2[4] + p2.z * R2[5],
|
|
|
|
p2.x * R2[6] + p2.y * R2[7] + p2.z * R2[8]);
|
|
|
|
|
|
|
|
double mult = 1;
|
|
|
|
if (cost_space_ == FOCAL_RAY_SPACE)
|
|
|
|
mult = sqrt(f1 * f2);
|
|
|
|
err.at<double>(3 * match_idx, 0) = mult * (d1.x - d2.x);
|
|
|
|
err.at<double>(3 * match_idx + 1, 0) = mult * (d1.y - d2.y);
|
|
|
|
err.at<double>(3 * match_idx + 2, 0) = mult * (d1.z - d2.z);
|
|
|
|
match_idx++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void calcDeriv(const Mat &err1, const Mat &err2, double h, Mat res)
|
|
|
|
{
|
|
|
|
for (int i = 0; i < err1.rows; ++i)
|
|
|
|
res.at<double>(i, 0) = (err2.at<double>(i, 0) - err1.at<double>(i, 0)) / h;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void BundleAdjuster::calcJacobian()
|
|
|
|
{
|
|
|
|
J_.create(total_num_matches_ * 3, num_images_ * 4, CV_64F);
|
|
|
|
|
|
|
|
double f, r;
|
|
|
|
const double df = 0.001; // Focal length step
|
|
|
|
const double dr = 0.001; // Angle step
|
|
|
|
|
|
|
|
for (int i = 0; i < num_images_; ++i)
|
|
|
|
{
|
|
|
|
f = cameras_.at<double>(i * 4, 0);
|
|
|
|
cameras_.at<double>(i * 4, 0) = f - df;
|
|
|
|
calcError(err1_);
|
|
|
|
cameras_.at<double>(i * 4, 0) = f + df;
|
|
|
|
calcError(err2_);
|
|
|
|
calcDeriv(err1_, err2_, 2 * df, J_.col(i * 4));
|
|
|
|
cameras_.at<double>(i * 4, 0) = f;
|
|
|
|
|
|
|
|
r = cameras_.at<double>(i * 4 + 1, 0);
|
|
|
|
cameras_.at<double>(i * 4 + 1, 0) = r - dr;
|
|
|
|
calcError(err1_);
|
|
|
|
cameras_.at<double>(i * 4 + 1, 0) = r + dr;
|
|
|
|
calcError(err2_);
|
|
|
|
calcDeriv(err1_, err2_, 2 * dr, J_.col(i * 4 + 1));
|
|
|
|
cameras_.at<double>(i * 4 + 1, 0) = r;
|
|
|
|
|
|
|
|
r = cameras_.at<double>(i * 4 + 2, 0);
|
|
|
|
cameras_.at<double>(i * 4 + 2, 0) = r - dr;
|
|
|
|
calcError(err1_);
|
|
|
|
cameras_.at<double>(i * 4 + 2, 0) = r + dr;
|
|
|
|
calcError(err2_);
|
|
|
|
calcDeriv(err1_, err2_, 2 * dr, J_.col(i * 4 + 2));
|
|
|
|
cameras_.at<double>(i * 4 + 2, 0) = r;
|
|
|
|
|
|
|
|
r = cameras_.at<double>(i * 4 + 3, 0);
|
|
|
|
cameras_.at<double>(i * 4 + 3, 0) = r - dr;
|
|
|
|
calcError(err1_);
|
|
|
|
cameras_.at<double>(i * 4 + 3, 0) = r + dr;
|
|
|
|
calcError(err2_);
|
|
|
|
calcDeriv(err1_, err2_, 2 * dr, J_.col(i * 4 + 3));
|
|
|
|
cameras_.at<double>(i * 4 + 3, 0) = r;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
void waveCorrect(vector<Mat> &rmats)
|
|
|
|
{
|
|
|
|
float data[9];
|
|
|
|
Mat r0(1, 3, CV_32F, data);
|
|
|
|
Mat r1(1, 3, CV_32F, data + 3);
|
|
|
|
Mat r2(1, 3, CV_32F, data + 6);
|
|
|
|
Mat R(3, 3, CV_32F, data);
|
|
|
|
|
|
|
|
Mat cov = Mat::zeros(3, 3, CV_32F);
|
|
|
|
for (size_t i = 0; i < rmats.size(); ++i)
|
|
|
|
{
|
|
|
|
Mat r0 = rmats[i].col(0);
|
|
|
|
cov += r0 * r0.t();
|
|
|
|
}
|
|
|
|
|
|
|
|
SVD svd;
|
|
|
|
svd(cov, SVD::FULL_UV);
|
|
|
|
svd.vt.row(2).copyTo(r1);
|
|
|
|
if (determinant(svd.vt) < 0) r1 *= -1;
|
|
|
|
|
|
|
|
Mat avgz = Mat::zeros(3, 1, CV_32F);
|
|
|
|
for (size_t i = 0; i < rmats.size(); ++i)
|
|
|
|
avgz += rmats[i].col(2);
|
|
|
|
r1.cross(avgz.t()).copyTo(r0);
|
|
|
|
normalize(r0, r0);
|
|
|
|
|
|
|
|
r1.cross(r0).copyTo(r2);
|
|
|
|
if (determinant(R) < 0) R *= -1;
|
|
|
|
|
|
|
|
for (size_t i = 0; i < rmats.size(); ++i)
|
|
|
|
rmats[i] = R * rmats[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
vector<int> leaveBiggestComponent(vector<ImageFeatures> &features, vector<MatchesInfo> &pairwise_matches,
|
|
|
|
float conf_threshold)
|
|
|
|
{
|
|
|
|
const int num_images = static_cast<int>(features.size());
|
|
|
|
|
|
|
|
DjSets comps(num_images);
|
|
|
|
for (int i = 0; i < num_images; ++i)
|
|
|
|
{
|
|
|
|
for (int j = 0; j < num_images; ++j)
|
|
|
|
{
|
|
|
|
if (pairwise_matches[i*num_images + j].confidence < conf_threshold)
|
|
|
|
continue;
|
|
|
|
int comp1 = comps.find(i);
|
|
|
|
int comp2 = comps.find(j);
|
|
|
|
if (comp1 != comp2)
|
|
|
|
comps.merge(comp1, comp2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int max_comp = max_element(comps.size.begin(), comps.size.end()) - comps.size.begin();
|
|
|
|
|
|
|
|
vector<int> indices;
|
|
|
|
vector<int> indices_removed;
|
|
|
|
for (int i = 0; i < num_images; ++i)
|
|
|
|
if (comps.find(i) == max_comp)
|
|
|
|
indices.push_back(i);
|
|
|
|
else
|
|
|
|
indices_removed.push_back(i);
|
|
|
|
|
|
|
|
vector<ImageFeatures> features_subset;
|
|
|
|
vector<MatchesInfo> pairwise_matches_subset;
|
|
|
|
for (size_t i = 0; i < indices.size(); ++i)
|
|
|
|
{
|
|
|
|
features_subset.push_back(features[indices[i]]);
|
|
|
|
for (size_t j = 0; j < indices.size(); ++j)
|
|
|
|
{
|
|
|
|
pairwise_matches_subset.push_back(pairwise_matches[indices[i]*num_images + indices[j]]);
|
|
|
|
pairwise_matches_subset.back().src_img_idx = i;
|
|
|
|
pairwise_matches_subset.back().dst_img_idx = j;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (static_cast<int>(features_subset.size()) == num_images)
|
|
|
|
return indices;
|
|
|
|
|
|
|
|
LOG("Removed some images, because can't match them: (");
|
|
|
|
LOG(indices_removed[0]+1);
|
|
|
|
for (size_t i = 1; i < indices_removed.size(); ++i)
|
|
|
|
LOG(", " << indices_removed[i]+1);
|
|
|
|
LOGLN("). Try decrease --match_conf value.");
|
|
|
|
|
|
|
|
features = features_subset;
|
|
|
|
pairwise_matches = pairwise_matches_subset;
|
|
|
|
|
|
|
|
return indices;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void findMaxSpanningTree(int num_images, const vector<MatchesInfo> &pairwise_matches,
|
|
|
|
Graph &span_tree, vector<int> ¢ers)
|
|
|
|
{
|
|
|
|
Graph graph(num_images);
|
|
|
|
vector<GraphEdge> edges;
|
|
|
|
|
|
|
|
// Construct images graph and remember its edges
|
|
|
|
for (int i = 0; i < num_images; ++i)
|
|
|
|
{
|
|
|
|
for (int j = 0; j < num_images; ++j)
|
|
|
|
{
|
|
|
|
if (pairwise_matches[i * num_images + j].H.empty())
|
|
|
|
continue;
|
|
|
|
float conf = static_cast<float>(pairwise_matches[i * num_images + j].num_inliers);
|
|
|
|
graph.addEdge(i, j, conf);
|
|
|
|
edges.push_back(GraphEdge(i, j, conf));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
DjSets comps(num_images);
|
|
|
|
span_tree.create(num_images);
|
|
|
|
vector<int> span_tree_powers(num_images, 0);
|
|
|
|
|
|
|
|
// Find maximum spanning tree
|
|
|
|
sort(edges.begin(), edges.end(), greater<GraphEdge>());
|
|
|
|
for (size_t i = 0; i < edges.size(); ++i)
|
|
|
|
{
|
|
|
|
int comp1 = comps.find(edges[i].from);
|
|
|
|
int comp2 = comps.find(edges[i].to);
|
|
|
|
if (comp1 != comp2)
|
|
|
|
{
|
|
|
|
comps.merge(comp1, comp2);
|
|
|
|
span_tree.addEdge(edges[i].from, edges[i].to, edges[i].weight);
|
|
|
|
span_tree.addEdge(edges[i].to, edges[i].from, edges[i].weight);
|
|
|
|
span_tree_powers[edges[i].from]++;
|
|
|
|
span_tree_powers[edges[i].to]++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Find spanning tree leafs
|
|
|
|
vector<int> span_tree_leafs;
|
|
|
|
for (int i = 0; i < num_images; ++i)
|
|
|
|
if (span_tree_powers[i] == 1)
|
|
|
|
span_tree_leafs.push_back(i);
|
|
|
|
|
|
|
|
// Find maximum distance from each spanning tree vertex
|
|
|
|
vector<int> max_dists(num_images, 0);
|
|
|
|
vector<int> cur_dists;
|
|
|
|
for (size_t i = 0; i < span_tree_leafs.size(); ++i)
|
|
|
|
{
|
|
|
|
cur_dists.assign(num_images, 0);
|
|
|
|
span_tree.walkBreadthFirst(span_tree_leafs[i], IncDistance(cur_dists));
|
|
|
|
for (int j = 0; j < num_images; ++j)
|
|
|
|
max_dists[j] = max(max_dists[j], cur_dists[j]);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Find min-max distance
|
|
|
|
int min_max_dist = max_dists[0];
|
|
|
|
for (int i = 1; i < num_images; ++i)
|
|
|
|
if (min_max_dist > max_dists[i])
|
|
|
|
min_max_dist = max_dists[i];
|
|
|
|
|
|
|
|
// Find spanning tree centers
|
|
|
|
centers.clear();
|
|
|
|
for (int i = 0; i < num_images; ++i)
|
|
|
|
if (max_dists[i] == min_max_dist)
|
|
|
|
centers.push_back(i);
|
|
|
|
CV_Assert(centers.size() > 0 && centers.size() <= 2);
|
|
|
|
}
|