opencv/3rdparty/openexr/Imath/ImathRandom.cpp

196 lines
5.7 KiB
C++
Raw Normal View History

2012-08-24 22:31:49 +02:00
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
// Digital Ltd. LLC
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Industrial Light & Magic nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////
//-----------------------------------------------------------------------------
//
// Routines that generate pseudo-random numbers compatible
// with the standard erand48(), nrand48(), etc. functions.
//
//-----------------------------------------------------------------------------
#include "ImathRandom.h"
#include "ImathInt64.h"
namespace Imath {
namespace {
//
// Static state used by Imath::drand48(), Imath::lrand48() and Imath::srand48()
//
unsigned short staticState[3] = {0, 0, 0};
void
rand48Next (unsigned short state[3])
{
//
// drand48() and friends are all based on a linear congruential
// sequence,
//
// x[n+1] = (a * x[n] + c) % m,
//
// where a and c are as specified below, and m == (1 << 48)
//
static const Int64 a = Int64 (0x5deece66dLL);
static const Int64 c = Int64 (0xbLL);
//
// Assemble the 48-bit value x[n] from the
// three 16-bit values stored in state.
//
Int64 x = (Int64 (state[2]) << 32) |
(Int64 (state[1]) << 16) |
Int64 (state[0]);
//
// Compute x[n+1], except for the "modulo m" part.
//
x = a * x + c;
//
// Disassemble the 48 least significant bits of x[n+1] into
// three 16-bit values. Discard the 16 most significant bits;
// this takes care of the "modulo m" operation.
//
// We assume that sizeof (unsigned short) == 2.
//
state[2] = (unsigned short)(x >> 32);
state[1] = (unsigned short)(x >> 16);
state[0] = (unsigned short)(x);
}
} // namespace
double
erand48 (unsigned short state[3])
{
//
// Generate double-precision floating-point values between 0.0 and 1.0:
//
// The exponent is set to 0x3ff, which indicates a value greater
// than or equal to 1.0, and less than 2.0. The 48 most significant
// bits of the significand (mantissa) are filled with pseudo-random
// bits generated by rand48Next(). The remaining 4 bits are a copy
// of the 4 most significant bits of the significand. This results
// in bit patterns between 0x3ff0000000000000 and 0x3fffffffffffffff,
// which correspond to uniformly distributed floating-point values
// between 1.0 and 1.99999999999999978. Subtracting 1.0 from those
// values produces numbers between 0.0 and 0.99999999999999978, that
// is, between 0.0 and 1.0-DBL_EPSILON.
//
rand48Next (state);
union {double d; Int64 i;} u;
u.i = (Int64 (0x3ff) << 52) | // sign and exponent
(Int64 (state[2]) << 36) | // significand
(Int64 (state[1]) << 20) |
(Int64 (state[0]) << 4) |
(Int64 (state[2]) >> 12);
return u.d - 1;
}
double
drand48 ()
{
return Imath::erand48 (staticState);
}
long int
nrand48 (unsigned short state[3])
{
//
// Generate uniformly distributed integers between 0 and 0x7fffffff.
//
rand48Next (state);
return ((long int) (state[2]) << 15) |
((long int) (state[1]) >> 1);
}
long int
lrand48 ()
{
return Imath::nrand48 (staticState);
}
void
srand48 (long int seed)
{
staticState[2] = (unsigned short)(seed >> 16);
staticState[1] = (unsigned short)(seed);
staticState[0] = 0x330e;
}
float
Rand32::nextf ()
{
//
// Generate single-precision floating-point values between 0.0 and 1.0:
//
// The exponent is set to 0x7f, which indicates a value greater than
// or equal to 1.0, and less than 2.0. The 23 bits of the significand
// (mantissa) are filled with pseudo-random bits generated by
// Rand32::next(). This results in in bit patterns between 0x3f800000
// and 0x3fffffff, which correspond to uniformly distributed floating-
// point values between 1.0 and 1.99999988. Subtracting 1.0 from
// those values produces numbers between 0.0 and 0.99999988, that is,
// between 0.0 and 1.0-FLT_EPSILON.
//
next ();
union {float f; unsigned int i;} u;
u.i = 0x3f800000 | (_state & 0x7fffff);
return u.f - 1;
}
} // namespace Imath