opencv/modules/core/src/gpu_mat.cpp

1121 lines
39 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::gpu;
/////////////////////////// matrix operations /////////////////////////
#ifdef HAVE_CUDA
// CUDA implementation
#include "cuda/matrix_operations.hpp"
namespace
{
template <typename T> void cudaSet_(GpuMat& src, Scalar s, cudaStream_t stream)
{
Scalar_<T> sf = s;
cudev::set<T>(PtrStepSz<T>(src), sf.val, src.channels(), stream);
}
void cudaSet(GpuMat& src, Scalar s, cudaStream_t stream)
{
typedef void (*func_t)(GpuMat& src, Scalar s, cudaStream_t stream);
static const func_t funcs[] =
{
cudaSet_<uchar>,
cudaSet_<schar>,
cudaSet_<ushort>,
cudaSet_<short>,
cudaSet_<int>,
cudaSet_<float>,
cudaSet_<double>
};
funcs[src.depth()](src, s, stream);
}
template <typename T> void cudaSet_(GpuMat& src, Scalar s, PtrStepSzb mask, cudaStream_t stream)
{
Scalar_<T> sf = s;
cudev::set<T>(PtrStepSz<T>(src), sf.val, mask, src.channels(), stream);
}
void cudaSet(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream)
{
typedef void (*func_t)(GpuMat& src, Scalar s, PtrStepSzb mask, cudaStream_t stream);
static const func_t funcs[] =
{
cudaSet_<uchar>,
cudaSet_<schar>,
cudaSet_<ushort>,
cudaSet_<short>,
cudaSet_<int>,
cudaSet_<float>,
cudaSet_<double>
};
funcs[src.depth()](src, s, mask, stream);
}
void cudaCopyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream)
{
cudev::copyWithMask(src.reshape(1), dst.reshape(1), src.elemSize1(), src.channels(), mask.reshape(1), mask.channels() != 1, stream);
}
void cudaConvert(const GpuMat& src, GpuMat& dst, cudaStream_t stream)
{
cudev::convert(src.reshape(1), src.depth(), dst.reshape(1), dst.depth(), 1.0, 0.0, stream);
}
void cudaConvert(const GpuMat& src, GpuMat& dst, double alpha, double beta, cudaStream_t stream)
{
cudev::convert(src.reshape(1), src.depth(), dst.reshape(1), dst.depth(), alpha, beta, stream);
}
}
// NPP implementation
namespace
{
//////////////////////////////////////////////////////////////////////////
// Convert
template<int SDEPTH, int DDEPTH> struct NppConvertFunc
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, dst_t* pDst, int nDstStep, NppiSize oSizeROI);
};
template<int DDEPTH> struct NppConvertFunc<CV_32F, DDEPTH>
{
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, dst_t* pDst, int nDstStep, NppiSize oSizeROI, NppRoundMode eRoundMode);
};
template<int SDEPTH, int DDEPTH, typename NppConvertFunc<SDEPTH, DDEPTH>::func_ptr func> struct NppCvt
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
static void call(const GpuMat& src, GpuMat& dst, cudaStream_t stream)
{
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
NppStreamHandler h(stream);
nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), dst.ptr<dst_t>(), static_cast<int>(dst.step), sz) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
template<int DDEPTH, typename NppConvertFunc<CV_32F, DDEPTH>::func_ptr func> struct NppCvt<CV_32F, DDEPTH, func>
{
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
static void call(const GpuMat& src, GpuMat& dst, cudaStream_t stream)
{
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
NppStreamHandler h(stream);
nppSafeCall( func(src.ptr<Npp32f>(), static_cast<int>(src.step), dst.ptr<dst_t>(), static_cast<int>(dst.step), sz, NPP_RND_NEAR) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
//////////////////////////////////////////////////////////////////////////
// Set
template<int SDEPTH, int SCN> struct NppSetFunc
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef NppStatus (*func_ptr)(const src_t values[], src_t* pSrc, int nSrcStep, NppiSize oSizeROI);
};
template<int SDEPTH> struct NppSetFunc<SDEPTH, 1>
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef NppStatus (*func_ptr)(src_t val, src_t* pSrc, int nSrcStep, NppiSize oSizeROI);
};
template<int SCN> struct NppSetFunc<CV_8S, SCN>
{
typedef NppStatus (*func_ptr)(Npp8s values[], Npp8s* pSrc, int nSrcStep, NppiSize oSizeROI);
};
template<> struct NppSetFunc<CV_8S, 1>
{
typedef NppStatus (*func_ptr)(Npp8s val, Npp8s* pSrc, int nSrcStep, NppiSize oSizeROI);
};
template<int SDEPTH, int SCN, typename NppSetFunc<SDEPTH, SCN>::func_ptr func> struct NppSet
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
static void call(GpuMat& src, Scalar s, cudaStream_t stream)
{
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
Scalar_<src_t> nppS = s;
NppStreamHandler h(stream);
nppSafeCall( func(nppS.val, src.ptr<src_t>(), static_cast<int>(src.step), sz) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
template<int SDEPTH, typename NppSetFunc<SDEPTH, 1>::func_ptr func> struct NppSet<SDEPTH, 1, func>
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
static void call(GpuMat& src, Scalar s, cudaStream_t stream)
{
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
Scalar_<src_t> nppS = s;
NppStreamHandler h(stream);
nppSafeCall( func(nppS[0], src.ptr<src_t>(), static_cast<int>(src.step), sz) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
template<int SDEPTH, int SCN> struct NppSetMaskFunc
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef NppStatus (*func_ptr)(const src_t values[], src_t* pSrc, int nSrcStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep);
};
template<int SDEPTH> struct NppSetMaskFunc<SDEPTH, 1>
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef NppStatus (*func_ptr)(src_t val, src_t* pSrc, int nSrcStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep);
};
template<int SDEPTH, int SCN, typename NppSetMaskFunc<SDEPTH, SCN>::func_ptr func> struct NppSetMask
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
static void call(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream)
{
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
Scalar_<src_t> nppS = s;
NppStreamHandler h(stream);
nppSafeCall( func(nppS.val, src.ptr<src_t>(), static_cast<int>(src.step), sz, mask.ptr<Npp8u>(), static_cast<int>(mask.step)) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
template<int SDEPTH, typename NppSetMaskFunc<SDEPTH, 1>::func_ptr func> struct NppSetMask<SDEPTH, 1, func>
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
static void call(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream)
{
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
Scalar_<src_t> nppS = s;
NppStreamHandler h(stream);
nppSafeCall( func(nppS[0], src.ptr<src_t>(), static_cast<int>(src.step), sz, mask.ptr<Npp8u>(), static_cast<int>(mask.step)) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
//////////////////////////////////////////////////////////////////////////
// CopyMasked
template<int SDEPTH> struct NppCopyWithMaskFunc
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, src_t* pDst, int nDstStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep);
};
template<int SDEPTH, typename NppCopyWithMaskFunc<SDEPTH>::func_ptr func> struct NppCopyWithMask
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
static void call(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream)
{
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
NppStreamHandler h(stream);
nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), dst.ptr<src_t>(), static_cast<int>(dst.step), sz, mask.ptr<Npp8u>(), static_cast<int>(mask.step)) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
}
// Dispatcher
namespace
{
void copyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream = 0)
{
CV_DbgAssert( src.size() == dst.size() && src.type() == dst.type() );
CV_Assert( src.depth() <= CV_64F && src.channels() <= 4 );
CV_Assert( src.size() == mask.size() && mask.depth() == CV_8U && (mask.channels() == 1 || mask.channels() == src.channels()) );
if (src.depth() == CV_64F)
{
CV_Assert( deviceSupports(NATIVE_DOUBLE) );
}
typedef void (*func_t)(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream);
static const func_t funcs[7][4] =
{
/* 8U */ {NppCopyWithMask<CV_8U , nppiCopy_8u_C1MR >::call, cudaCopyWithMask, NppCopyWithMask<CV_8U , nppiCopy_8u_C3MR >::call, NppCopyWithMask<CV_8U , nppiCopy_8u_C4MR >::call},
/* 8S */ {cudaCopyWithMask , cudaCopyWithMask, cudaCopyWithMask , cudaCopyWithMask },
/* 16U */ {NppCopyWithMask<CV_16U, nppiCopy_16u_C1MR>::call, cudaCopyWithMask, NppCopyWithMask<CV_16U, nppiCopy_16u_C3MR>::call, NppCopyWithMask<CV_16U, nppiCopy_16u_C4MR>::call},
/* 16S */ {NppCopyWithMask<CV_16S, nppiCopy_16s_C1MR>::call, cudaCopyWithMask, NppCopyWithMask<CV_16S, nppiCopy_16s_C3MR>::call, NppCopyWithMask<CV_16S, nppiCopy_16s_C4MR>::call},
/* 32S */ {NppCopyWithMask<CV_32S, nppiCopy_32s_C1MR>::call, cudaCopyWithMask, NppCopyWithMask<CV_32S, nppiCopy_32s_C3MR>::call, NppCopyWithMask<CV_32S, nppiCopy_32s_C4MR>::call},
/* 32F */ {NppCopyWithMask<CV_32F, nppiCopy_32f_C1MR>::call, cudaCopyWithMask, NppCopyWithMask<CV_32F, nppiCopy_32f_C3MR>::call, NppCopyWithMask<CV_32F, nppiCopy_32f_C4MR>::call},
/* 64F */ {cudaCopyWithMask , cudaCopyWithMask, cudaCopyWithMask , cudaCopyWithMask }
};
const func_t func = mask.channels() == src.channels() ? funcs[src.depth()][src.channels() - 1] : cudaCopyWithMask;
func(src, dst, mask, stream);
}
void convert(const GpuMat& src, GpuMat& dst, cudaStream_t stream = 0)
{
CV_DbgAssert( src.size() == dst.size() && src.channels() == dst.channels() );
CV_Assert( src.depth() <= CV_64F && src.channels() <= 4 );
CV_Assert( dst.depth() <= CV_64F );
if (src.depth() == CV_64F || dst.depth() == CV_64F)
{
CV_Assert( deviceSupports(NATIVE_DOUBLE) );
}
typedef void (*func_t)(const GpuMat& src, GpuMat& dst, cudaStream_t stream);
static const func_t funcs[7][7][4] =
{
{
/* 8U -> 8U */ {0, 0, 0, 0},
/* 8U -> 8S */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert },
/* 8U -> 16U */ {NppCvt<CV_8U, CV_16U, nppiConvert_8u16u_C1R>::call, cudaConvert, cudaConvert, NppCvt<CV_8U, CV_16U, nppiConvert_8u16u_C4R>::call},
/* 8U -> 16S */ {NppCvt<CV_8U, CV_16S, nppiConvert_8u16s_C1R>::call, cudaConvert, cudaConvert, NppCvt<CV_8U, CV_16S, nppiConvert_8u16s_C4R>::call},
/* 8U -> 32S */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert },
/* 8U -> 32F */ {NppCvt<CV_8U, CV_32F, nppiConvert_8u32f_C1R>::call, cudaConvert, cudaConvert, cudaConvert },
/* 8U -> 64F */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert }
},
{
/* 8S -> 8U */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
/* 8S -> 8S */ {0,0,0,0},
/* 8S -> 16U */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
/* 8S -> 16S */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
/* 8S -> 32S */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
/* 8S -> 32F */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
/* 8S -> 64F */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert}
},
{
/* 16U -> 8U */ {NppCvt<CV_16U, CV_8U , nppiConvert_16u8u_C1R >::call, cudaConvert, cudaConvert, NppCvt<CV_16U, CV_8U, nppiConvert_16u8u_C4R>::call},
/* 16U -> 8S */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert },
/* 16U -> 16U */ {0,0,0,0},
/* 16U -> 16S */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert },
/* 16U -> 32S */ {NppCvt<CV_16U, CV_32S, nppiConvert_16u32s_C1R>::call, cudaConvert, cudaConvert, cudaConvert },
/* 16U -> 32F */ {NppCvt<CV_16U, CV_32F, nppiConvert_16u32f_C1R>::call, cudaConvert, cudaConvert, cudaConvert },
/* 16U -> 64F */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert }
},
{
/* 16S -> 8U */ {NppCvt<CV_16S, CV_8U , nppiConvert_16s8u_C1R >::call, cudaConvert, cudaConvert, NppCvt<CV_16S, CV_8U, nppiConvert_16s8u_C4R>::call},
/* 16S -> 8S */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert },
/* 16S -> 16U */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert },
/* 16S -> 16S */ {0,0,0,0},
/* 16S -> 32S */ {NppCvt<CV_16S, CV_32S, nppiConvert_16s32s_C1R>::call, cudaConvert, cudaConvert, cudaConvert },
/* 16S -> 32F */ {NppCvt<CV_16S, CV_32F, nppiConvert_16s32f_C1R>::call, cudaConvert, cudaConvert, cudaConvert },
/* 16S -> 64F */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert }
},
{
/* 32S -> 8U */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
/* 32S -> 8S */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
/* 32S -> 16U */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
/* 32S -> 16S */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
/* 32S -> 32S */ {0,0,0,0},
/* 32S -> 32F */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
/* 32S -> 64F */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert}
},
{
/* 32F -> 8U */ {NppCvt<CV_32F, CV_8U , nppiConvert_32f8u_C1R >::call, cudaConvert, cudaConvert, cudaConvert},
/* 32F -> 8S */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert},
/* 32F -> 16U */ {NppCvt<CV_32F, CV_16U, nppiConvert_32f16u_C1R>::call, cudaConvert, cudaConvert, cudaConvert},
/* 32F -> 16S */ {NppCvt<CV_32F, CV_16S, nppiConvert_32f16s_C1R>::call, cudaConvert, cudaConvert, cudaConvert},
/* 32F -> 32S */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert},
/* 32F -> 32F */ {0,0,0,0},
/* 32F -> 64F */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert}
},
{
/* 64F -> 8U */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
/* 64F -> 8S */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
/* 64F -> 16U */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
/* 64F -> 16S */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
/* 64F -> 32S */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
/* 64F -> 32F */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
/* 64F -> 64F */ {0,0,0,0}
}
};
const bool aligned = isAligned(src.data, 16) && isAligned(dst.data, 16);
if (!aligned)
{
cudaConvert(src, dst, stream);
return;
}
const func_t func = funcs[src.depth()][dst.depth()][src.channels() - 1];
CV_DbgAssert( func != 0 );
func(src, dst, stream);
}
void convert(const GpuMat& src, GpuMat& dst, double alpha, double beta, cudaStream_t stream = 0)
{
CV_DbgAssert( src.size() == dst.size() && src.channels() == dst.channels() );
CV_Assert( src.depth() <= CV_64F && src.channels() <= 4 );
CV_Assert( dst.depth() <= CV_64F );
if (src.depth() == CV_64F || dst.depth() == CV_64F)
{
CV_Assert( deviceSupports(NATIVE_DOUBLE) );
}
cudaConvert(src, dst, alpha, beta, stream);
}
void set(GpuMat& m, Scalar s, cudaStream_t stream = 0)
{
if (s[0] == 0.0 && s[1] == 0.0 && s[2] == 0.0 && s[3] == 0.0)
{
if (stream)
cudaSafeCall( cudaMemset2DAsync(m.data, m.step, 0, m.cols * m.elemSize(), m.rows, stream) );
else
cudaSafeCall( cudaMemset2D(m.data, m.step, 0, m.cols * m.elemSize(), m.rows) );
return;
}
if (m.depth() == CV_8U)
{
int cn = m.channels();
if (cn == 1 || (cn == 2 && s[0] == s[1]) || (cn == 3 && s[0] == s[1] && s[0] == s[2]) || (cn == 4 && s[0] == s[1] && s[0] == s[2] && s[0] == s[3]))
{
int val = saturate_cast<uchar>(s[0]);
if (stream)
cudaSafeCall( cudaMemset2DAsync(m.data, m.step, val, m.cols * m.elemSize(), m.rows, stream) );
else
cudaSafeCall( cudaMemset2D(m.data, m.step, val, m.cols * m.elemSize(), m.rows) );
return;
}
}
typedef void (*func_t)(GpuMat& src, Scalar s, cudaStream_t stream);
static const func_t funcs[7][4] =
{
{NppSet<CV_8U , 1, nppiSet_8u_C1R >::call, cudaSet , cudaSet , NppSet<CV_8U , 4, nppiSet_8u_C4R >::call},
{NppSet<CV_8S , 1, nppiSet_8s_C1R >::call, NppSet<CV_8S , 2, nppiSet_8s_C2R >::call, NppSet<CV_8S, 3, nppiSet_8s_C3R>::call, NppSet<CV_8S , 4, nppiSet_8s_C4R >::call},
{NppSet<CV_16U, 1, nppiSet_16u_C1R>::call, NppSet<CV_16U, 2, nppiSet_16u_C2R>::call, cudaSet , NppSet<CV_16U, 4, nppiSet_16u_C4R>::call},
{NppSet<CV_16S, 1, nppiSet_16s_C1R>::call, NppSet<CV_16S, 2, nppiSet_16s_C2R>::call, cudaSet , NppSet<CV_16S, 4, nppiSet_16s_C4R>::call},
{NppSet<CV_32S, 1, nppiSet_32s_C1R>::call, cudaSet , cudaSet , NppSet<CV_32S, 4, nppiSet_32s_C4R>::call},
{NppSet<CV_32F, 1, nppiSet_32f_C1R>::call, cudaSet , cudaSet , NppSet<CV_32F, 4, nppiSet_32f_C4R>::call},
{cudaSet , cudaSet , cudaSet , cudaSet }
};
CV_Assert( m.depth() <= CV_64F && m.channels() <= 4 );
if (m.depth() == CV_64F)
{
CV_Assert( deviceSupports(NATIVE_DOUBLE) );
}
funcs[m.depth()][m.channels() - 1](m, s, stream);
}
void set(GpuMat& m, Scalar s, const GpuMat& mask, cudaStream_t stream = 0)
{
CV_DbgAssert( !mask.empty() );
CV_Assert( m.depth() <= CV_64F && m.channels() <= 4 );
if (m.depth() == CV_64F)
{
CV_Assert( deviceSupports(NATIVE_DOUBLE) );
}
typedef void (*func_t)(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream);
static const func_t funcs[7][4] =
{
{NppSetMask<CV_8U , 1, nppiSet_8u_C1MR >::call, cudaSet, cudaSet, NppSetMask<CV_8U , 4, nppiSet_8u_C4MR >::call},
{cudaSet , cudaSet, cudaSet, cudaSet },
{NppSetMask<CV_16U, 1, nppiSet_16u_C1MR>::call, cudaSet, cudaSet, NppSetMask<CV_16U, 4, nppiSet_16u_C4MR>::call},
{NppSetMask<CV_16S, 1, nppiSet_16s_C1MR>::call, cudaSet, cudaSet, NppSetMask<CV_16S, 4, nppiSet_16s_C4MR>::call},
{NppSetMask<CV_32S, 1, nppiSet_32s_C1MR>::call, cudaSet, cudaSet, NppSetMask<CV_32S, 4, nppiSet_32s_C4MR>::call},
{NppSetMask<CV_32F, 1, nppiSet_32f_C1MR>::call, cudaSet, cudaSet, NppSetMask<CV_32F, 4, nppiSet_32f_C4MR>::call},
{cudaSet , cudaSet, cudaSet, cudaSet }
};
funcs[m.depth()][m.channels() - 1](m, s, mask, stream);
}
}
#endif // HAVE_CUDA
cv::gpu::GpuMat::GpuMat(int rows_, int cols_, int type_, void* data_, size_t step_) :
flags(Mat::MAGIC_VAL + (type_ & Mat::TYPE_MASK)), rows(rows_), cols(cols_),
step(step_), data((uchar*)data_), refcount(0),
datastart((uchar*)data_), dataend((uchar*)data_)
{
size_t minstep = cols * elemSize();
if (step == Mat::AUTO_STEP)
{
step = minstep;
flags |= Mat::CONTINUOUS_FLAG;
}
else
{
if (rows == 1)
step = minstep;
CV_DbgAssert( step >= minstep );
flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0;
}
dataend += step * (rows - 1) + minstep;
}
cv::gpu::GpuMat::GpuMat(Size size_, int type_, void* data_, size_t step_) :
flags(Mat::MAGIC_VAL + (type_ & Mat::TYPE_MASK)), rows(size_.height), cols(size_.width),
step(step_), data((uchar*)data_), refcount(0),
datastart((uchar*)data_), dataend((uchar*)data_)
{
size_t minstep = cols * elemSize();
if (step == Mat::AUTO_STEP)
{
step = minstep;
flags |= Mat::CONTINUOUS_FLAG;
}
else
{
if (rows == 1)
step = minstep;
CV_DbgAssert( step >= minstep );
flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0;
}
dataend += step * (rows - 1) + minstep;
}
cv::gpu::GpuMat::GpuMat(const GpuMat& m, Range rowRange_, Range colRange_)
{
flags = m.flags;
step = m.step; refcount = m.refcount;
data = m.data; datastart = m.datastart; dataend = m.dataend;
if (rowRange_ == Range::all())
{
rows = m.rows;
}
else
{
CV_Assert( 0 <= rowRange_.start && rowRange_.start <= rowRange_.end && rowRange_.end <= m.rows );
rows = rowRange_.size();
data += step*rowRange_.start;
}
if (colRange_ == Range::all())
{
cols = m.cols;
}
else
{
CV_Assert( 0 <= colRange_.start && colRange_.start <= colRange_.end && colRange_.end <= m.cols );
cols = colRange_.size();
data += colRange_.start*elemSize();
flags &= cols < m.cols ? ~Mat::CONTINUOUS_FLAG : -1;
}
if (rows == 1)
flags |= Mat::CONTINUOUS_FLAG;
if (refcount)
CV_XADD(refcount, 1);
if (rows <= 0 || cols <= 0)
rows = cols = 0;
}
cv::gpu::GpuMat::GpuMat(const GpuMat& m, Rect roi) :
flags(m.flags), rows(roi.height), cols(roi.width),
step(m.step), data(m.data + roi.y*step), refcount(m.refcount),
datastart(m.datastart), dataend(m.dataend)
{
flags &= roi.width < m.cols ? ~Mat::CONTINUOUS_FLAG : -1;
data += roi.x * elemSize();
CV_Assert( 0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= m.cols && 0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= m.rows );
if (refcount)
CV_XADD(refcount, 1);
if (rows <= 0 || cols <= 0)
rows = cols = 0;
}
void cv::gpu::GpuMat::create(int _rows, int _cols, int _type)
{
#ifndef HAVE_CUDA
(void) _rows;
(void) _cols;
(void) _type;
throw_no_cuda();
#else
_type &= Mat::TYPE_MASK;
if (rows == _rows && cols == _cols && type() == _type && data)
return;
if (data)
release();
CV_DbgAssert( _rows >= 0 && _cols >= 0 );
if (_rows > 0 && _cols > 0)
{
flags = Mat::MAGIC_VAL + _type;
rows = _rows;
cols = _cols;
size_t esz = elemSize();
void* devPtr;
cudaSafeCall( cudaMallocPitch(&devPtr, &step, esz * cols, rows) );
// Single row must be continuous
if (rows == 1)
step = esz * cols;
if (esz * cols == step)
flags |= Mat::CONTINUOUS_FLAG;
int64 _nettosize = static_cast<int64>(step) * rows;
size_t nettosize = static_cast<size_t>(_nettosize);
datastart = data = static_cast<uchar*>(devPtr);
dataend = data + nettosize;
refcount = static_cast<int*>(fastMalloc(sizeof(*refcount)));
*refcount = 1;
}
#endif
}
void cv::gpu::GpuMat::release()
{
#ifdef HAVE_CUDA
if (refcount && CV_XADD(refcount, -1) == 1)
{
cudaFree(datastart);
fastFree(refcount);
}
data = datastart = dataend = 0;
step = rows = cols = 0;
refcount = 0;
#endif
}
void cv::gpu::GpuMat::upload(InputArray arr)
{
#ifndef HAVE_CUDA
(void) arr;
throw_no_cuda();
#else
Mat mat = arr.getMat();
CV_DbgAssert( !mat.empty() );
create(mat.size(), mat.type());
cudaSafeCall( cudaMemcpy2D(data, step, mat.data, mat.step, cols * elemSize(), rows, cudaMemcpyHostToDevice) );
#endif
}
void cv::gpu::GpuMat::upload(InputArray arr, Stream& _stream)
{
#ifndef HAVE_CUDA
(void) arr;
(void) _stream;
throw_no_cuda();
#else
Mat mat = arr.getMat();
CV_DbgAssert( !mat.empty() );
create(mat.size(), mat.type());
cudaStream_t stream = StreamAccessor::getStream(_stream);
cudaSafeCall( cudaMemcpy2DAsync(data, step, mat.data, mat.step, cols * elemSize(), rows, cudaMemcpyHostToDevice, stream) );
#endif
}
void cv::gpu::GpuMat::download(OutputArray _dst) const
{
#ifndef HAVE_CUDA
(void) _dst;
throw_no_cuda();
#else
CV_DbgAssert( !empty() );
_dst.create(size(), type());
Mat dst = _dst.getMat();
cudaSafeCall( cudaMemcpy2D(dst.data, dst.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToHost) );
#endif
}
void cv::gpu::GpuMat::download(OutputArray _dst, Stream& _stream) const
{
#ifndef HAVE_CUDA
(void) _dst;
(void) _stream;
throw_no_cuda();
#else
CV_DbgAssert( !empty() );
_dst.create(size(), type());
Mat dst = _dst.getMat();
cudaStream_t stream = StreamAccessor::getStream(_stream);
cudaSafeCall( cudaMemcpy2DAsync(dst.data, dst.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToHost, stream) );
#endif
}
void cv::gpu::GpuMat::copyTo(OutputArray _dst) const
{
#ifndef HAVE_CUDA
(void) _dst;
throw_no_cuda();
#else
CV_DbgAssert( !empty() );
_dst.create(size(), type());
GpuMat dst = _dst.getGpuMat();
cudaSafeCall( cudaMemcpy2D(dst.data, dst.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToDevice) );
#endif
}
void cv::gpu::GpuMat::copyTo(OutputArray _dst, Stream& _stream) const
{
#ifndef HAVE_CUDA
(void) _dst;
(void) _stream;
throw_no_cuda();
#else
CV_DbgAssert( !empty() );
_dst.create(size(), type());
GpuMat dst = _dst.getGpuMat();
cudaStream_t stream = StreamAccessor::getStream(_stream);
cudaSafeCall( cudaMemcpy2DAsync(dst.data, dst.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToDevice, stream) );
#endif
}
void cv::gpu::GpuMat::copyTo(OutputArray _dst, InputArray _mask, Stream& _stream) const
{
#ifndef HAVE_CUDA
(void) _dst;
(void) _mask;
(void) _stream;
throw_no_cuda();
#else
CV_DbgAssert( !empty() );
_dst.create(size(), type());
GpuMat dst = _dst.getGpuMat();
GpuMat mask = _mask.getGpuMat();
cudaStream_t stream = StreamAccessor::getStream(_stream);
::copyWithMask(*this, dst, mask, stream);
#endif
}
GpuMat& cv::gpu::GpuMat::setTo(Scalar s, Stream& _stream)
{
#ifndef HAVE_CUDA
(void) s;
(void) _stream;
throw_no_cuda();
#else
CV_DbgAssert( !empty() );
cudaStream_t stream = StreamAccessor::getStream(_stream);
::set(*this, s, stream);
#endif
return *this;
}
GpuMat& cv::gpu::GpuMat::setTo(Scalar s, InputArray _mask, Stream& _stream)
{
#ifndef HAVE_CUDA
(void) s;
(void) _mask;
(void) _stream;
throw_no_cuda();
#else
CV_DbgAssert( !empty() );
GpuMat mask = _mask.getGpuMat();
cudaStream_t stream = StreamAccessor::getStream(_stream);
::set(*this, s, mask, stream);
#endif
return *this;
}
void cv::gpu::GpuMat::convertTo(OutputArray _dst, int rtype, Stream& _stream) const
{
#ifndef HAVE_CUDA
(void) _dst;
(void) rtype;
(void) _stream;
throw_no_cuda();
#else
if (rtype < 0)
rtype = type();
else
rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), channels());
const int sdepth = depth();
const int ddepth = CV_MAT_DEPTH(rtype);
if (sdepth == ddepth)
{
if (_stream)
copyTo(_dst, _stream);
else
copyTo(_dst);
return;
}
GpuMat src = *this;
_dst.create(size(), rtype);
GpuMat dst = _dst.getGpuMat();
cudaStream_t stream = StreamAccessor::getStream(_stream);
::convert(src, dst, stream);
#endif
}
void cv::gpu::GpuMat::convertTo(OutputArray _dst, int rtype, double alpha, double beta, Stream& _stream) const
{
#ifndef HAVE_CUDA
(void) _dst;
(void) rtype;
(void) alpha;
(void) beta;
(void) _stream;
throw_no_cuda();
#else
if (rtype < 0)
rtype = type();
else
rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), channels());
GpuMat src = *this;
_dst.create(size(), rtype);
GpuMat dst = _dst.getGpuMat();
cudaStream_t stream = StreamAccessor::getStream(_stream);
::convert(src, dst, alpha, beta, stream);
#endif
}
GpuMat cv::gpu::GpuMat::reshape(int new_cn, int new_rows) const
{
GpuMat hdr = *this;
int cn = channels();
if (new_cn == 0)
new_cn = cn;
int total_width = cols * cn;
if ((new_cn > total_width || total_width % new_cn != 0) && new_rows == 0)
new_rows = rows * total_width / new_cn;
if (new_rows != 0 && new_rows != rows)
{
int total_size = total_width * rows;
if (!isContinuous())
CV_Error(cv::Error::BadStep, "The matrix is not continuous, thus its number of rows can not be changed");
if ((unsigned)new_rows > (unsigned)total_size)
CV_Error(cv::Error::StsOutOfRange, "Bad new number of rows");
total_width = total_size / new_rows;
if (total_width * new_rows != total_size)
CV_Error(cv::Error::StsBadArg, "The total number of matrix elements is not divisible by the new number of rows");
hdr.rows = new_rows;
hdr.step = total_width * elemSize1();
}
int new_width = total_width / new_cn;
if (new_width * new_cn != total_width)
CV_Error(cv::Error::BadNumChannels, "The total width is not divisible by the new number of channels");
hdr.cols = new_width;
hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn - 1) << CV_CN_SHIFT);
return hdr;
}
void cv::gpu::GpuMat::locateROI(Size& wholeSize, Point& ofs) const
{
CV_DbgAssert( step > 0 );
size_t esz = elemSize();
ptrdiff_t delta1 = data - datastart;
ptrdiff_t delta2 = dataend - datastart;
if (delta1 == 0)
{
ofs.x = ofs.y = 0;
}
else
{
ofs.y = static_cast<int>(delta1 / step);
ofs.x = static_cast<int>((delta1 - step * ofs.y) / esz);
CV_DbgAssert( data == datastart + ofs.y * step + ofs.x * esz );
}
size_t minstep = (ofs.x + cols) * esz;
wholeSize.height = std::max(static_cast<int>((delta2 - minstep) / step + 1), ofs.y + rows);
wholeSize.width = std::max(static_cast<int>((delta2 - step * (wholeSize.height - 1)) / esz), ofs.x + cols);
}
GpuMat& cv::gpu::GpuMat::adjustROI(int dtop, int dbottom, int dleft, int dright)
{
Size wholeSize;
Point ofs;
locateROI(wholeSize, ofs);
size_t esz = elemSize();
int row1 = std::max(ofs.y - dtop, 0);
int row2 = std::min(ofs.y + rows + dbottom, wholeSize.height);
int col1 = std::max(ofs.x - dleft, 0);
int col2 = std::min(ofs.x + cols + dright, wholeSize.width);
data += (row1 - ofs.y) * step + (col1 - ofs.x) * esz;
rows = row2 - row1;
cols = col2 - col1;
if (esz * cols == step || rows == 1)
flags |= Mat::CONTINUOUS_FLAG;
else
flags &= ~Mat::CONTINUOUS_FLAG;
return *this;
}
namespace
{
template <class ObjType>
void createContinuousImpl(int rows, int cols, int type, ObjType& obj)
{
const int area = rows * cols;
if (obj.empty() || obj.type() != type || !obj.isContinuous() || obj.size().area() < area)
obj.create(1, area, type);
obj = obj.reshape(obj.channels(), rows);
}
}
void cv::gpu::createContinuous(int rows, int cols, int type, OutputArray arr)
{
switch (arr.kind())
{
case _InputArray::MAT:
::createContinuousImpl(rows, cols, type, arr.getMatRef());
break;
case _InputArray::GPU_MAT:
::createContinuousImpl(rows, cols, type, arr.getGpuMatRef());
break;
case _InputArray::CUDA_MEM:
::createContinuousImpl(rows, cols, type, arr.getCudaMemRef());
break;
default:
arr.create(rows, cols, type);
}
}
namespace
{
template <class ObjType>
void ensureSizeIsEnoughImpl(int rows, int cols, int type, ObjType& obj)
{
if (obj.empty() || obj.type() != type || obj.data != obj.datastart)
{
obj.create(rows, cols, type);
}
else
{
const size_t esz = obj.elemSize();
const ptrdiff_t delta2 = obj.dataend - obj.datastart;
const size_t minstep = obj.cols * esz;
Size wholeSize;
wholeSize.height = std::max(static_cast<int>((delta2 - minstep) / static_cast<size_t>(obj.step) + 1), obj.rows);
wholeSize.width = std::max(static_cast<int>((delta2 - static_cast<size_t>(obj.step) * (wholeSize.height - 1)) / esz), obj.cols);
if (wholeSize.height < rows || wholeSize.width < cols)
{
obj.create(rows, cols, type);
}
else
{
obj.cols = cols;
obj.rows = rows;
}
}
}
}
void cv::gpu::ensureSizeIsEnough(int rows, int cols, int type, OutputArray arr)
{
switch (arr.kind())
{
case _InputArray::MAT:
::ensureSizeIsEnoughImpl(rows, cols, type, arr.getMatRef());
break;
case _InputArray::GPU_MAT:
::ensureSizeIsEnoughImpl(rows, cols, type, arr.getGpuMatRef());
break;
case _InputArray::CUDA_MEM:
::ensureSizeIsEnoughImpl(rows, cols, type, arr.getCudaMemRef());
break;
default:
arr.create(rows, cols, type);
}
}
GpuMat cv::gpu::allocMatFromBuf(int rows, int cols, int type, GpuMat& mat)
{
if (!mat.empty() && mat.type() == type && mat.rows >= rows && mat.cols >= cols)
return mat(Rect(0, 0, cols, rows));
return mat = GpuMat(rows, cols, type);
}