108 lines
3.8 KiB
Python
108 lines
3.8 KiB
Python
|
#!/usr/bin/python
|
||
|
import urllib2
|
||
|
import sys
|
||
|
import cv
|
||
|
|
||
|
class Sketcher:
|
||
|
def __init__(self, windowname, dests):
|
||
|
self.prev_pt = None
|
||
|
self.windowname = windowname
|
||
|
self.dests = dests
|
||
|
cv.SetMouseCallback(self.windowname, self.on_mouse)
|
||
|
|
||
|
def on_mouse(self, event, x, y, flags, param):
|
||
|
pt = (x, y)
|
||
|
if event == cv.CV_EVENT_LBUTTONUP or not (flags & cv.CV_EVENT_FLAG_LBUTTON):
|
||
|
self.prev_pt = None
|
||
|
elif event == cv.CV_EVENT_LBUTTONDOWN:
|
||
|
self.prev_pt = pt
|
||
|
elif event == cv.CV_EVENT_MOUSEMOVE and (flags & cv.CV_EVENT_FLAG_LBUTTON) :
|
||
|
if self.prev_pt:
|
||
|
for dst in self.dests:
|
||
|
cv.Line(dst, self.prev_pt, pt, cv.ScalarAll(255), 5, 8, 0)
|
||
|
self.prev_pt = pt
|
||
|
cv.ShowImage(self.windowname, img)
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
if len(sys.argv) > 1:
|
||
|
img0 = cv.LoadImage( sys.argv[1], cv.CV_LOAD_IMAGE_COLOR)
|
||
|
else:
|
||
|
url = 'https://code.ros.org/svn/opencv/trunk/opencv/samples/c/fruits.jpg'
|
||
|
filedata = urllib2.urlopen(url).read()
|
||
|
imagefiledata = cv.CreateMatHeader(1, len(filedata), cv.CV_8UC1)
|
||
|
cv.SetData(imagefiledata, filedata, len(filedata))
|
||
|
img0 = cv.DecodeImage(imagefiledata, cv.CV_LOAD_IMAGE_COLOR)
|
||
|
|
||
|
rng = cv.RNG(-1)
|
||
|
|
||
|
print "Hot keys:"
|
||
|
print "\tESC - quit the program"
|
||
|
print "\tr - restore the original image"
|
||
|
print "\tw - run watershed algorithm"
|
||
|
print "\t (before that, roughly outline several markers on the image)"
|
||
|
|
||
|
cv.NamedWindow("image", 1)
|
||
|
cv.NamedWindow("watershed transform", 1)
|
||
|
|
||
|
img = cv.CloneImage(img0)
|
||
|
img_gray = cv.CloneImage(img0)
|
||
|
wshed = cv.CloneImage(img0)
|
||
|
marker_mask = cv.CreateImage(cv.GetSize(img), 8, 1)
|
||
|
markers = cv.CreateImage(cv.GetSize(img), cv.IPL_DEPTH_32S, 1)
|
||
|
|
||
|
cv.CvtColor(img, marker_mask, cv.CV_BGR2GRAY)
|
||
|
cv.CvtColor(marker_mask, img_gray, cv.CV_GRAY2BGR)
|
||
|
|
||
|
cv.Zero(marker_mask)
|
||
|
cv.Zero(wshed)
|
||
|
|
||
|
cv.ShowImage("image", img)
|
||
|
cv.ShowImage("watershed transform", wshed)
|
||
|
|
||
|
sk = Sketcher("image", [img, marker_mask])
|
||
|
|
||
|
while True:
|
||
|
c = cv.WaitKey(0) % 0x100
|
||
|
if c == 27 or c == ord('q'):
|
||
|
break
|
||
|
if c == ord('r'):
|
||
|
cv.Zero(marker_mask)
|
||
|
cv.Copy(img0, img)
|
||
|
cv.ShowImage("image", img)
|
||
|
if c == ord('w'):
|
||
|
storage = cv.CreateMemStorage(0)
|
||
|
#cv.SaveImage("wshed_mask.png", marker_mask)
|
||
|
#marker_mask = cv.LoadImage("wshed_mask.png", 0)
|
||
|
contours = cv.FindContours(marker_mask, storage, cv.CV_RETR_CCOMP, cv.CV_CHAIN_APPROX_SIMPLE)
|
||
|
def contour_iterator(contour):
|
||
|
while contour:
|
||
|
yield contour
|
||
|
contour = contour.h_next()
|
||
|
|
||
|
cv.Zero(markers)
|
||
|
comp_count = 0
|
||
|
for c in contour_iterator(contours):
|
||
|
cv.DrawContours(markers,
|
||
|
c,
|
||
|
cv.ScalarAll(comp_count + 1),
|
||
|
cv.ScalarAll(comp_count + 1),
|
||
|
-1,
|
||
|
-1,
|
||
|
8)
|
||
|
comp_count += 1
|
||
|
|
||
|
cv.Watershed(img0, markers)
|
||
|
|
||
|
cv.Set(wshed, cv.ScalarAll(255))
|
||
|
|
||
|
# paint the watershed image
|
||
|
color_tab = [(cv.RandInt(rng) % 180 + 50, cv.RandInt(rng) % 180 + 50, cv.RandInt(rng) % 180 + 50) for i in range(comp_count)]
|
||
|
for j in range(markers.height):
|
||
|
for i in range(markers.width):
|
||
|
idx = markers[j, i]
|
||
|
if idx != -1:
|
||
|
wshed[j, i] = color_tab[int(idx - 1)]
|
||
|
|
||
|
cv.AddWeighted(wshed, 0.5, img_gray, 0.5, 0, wshed)
|
||
|
cv.ShowImage("watershed transform", wshed)
|