2012-09-03 11:03:37 +02:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
|
|
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// @Authors
|
|
|
|
// Fangfang Bai, fangfang@multicorewareinc.com
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other oclMaterials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors as is and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
#include <iomanip>
|
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
using namespace cv;
|
|
|
|
using namespace cv::ocl;
|
|
|
|
using namespace cvtest;
|
|
|
|
using namespace testing;
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
#ifndef MWC_TEST_UTILITY
|
|
|
|
#define MWC_TEST_UTILITY
|
|
|
|
//////// Utility
|
|
|
|
#ifndef DIFFERENT_SIZES
|
|
|
|
#else
|
|
|
|
#undef DIFFERENT_SIZES
|
|
|
|
#endif
|
|
|
|
#define DIFFERENT_SIZES testing::Values(cv::Size(256, 256), cv::Size(3000, 3000))
|
|
|
|
|
|
|
|
// Param class
|
|
|
|
#ifndef IMPLEMENT_PARAM_CLASS
|
|
|
|
#define IMPLEMENT_PARAM_CLASS(name, type) \
|
|
|
|
class name \
|
|
|
|
{ \
|
|
|
|
public: \
|
2012-10-17 09:12:04 +02:00
|
|
|
name ( type arg = type ()) : val_(arg) {} \
|
|
|
|
operator type () const {return val_;} \
|
2012-09-03 11:03:37 +02:00
|
|
|
private: \
|
2012-10-17 09:12:04 +02:00
|
|
|
type val_; \
|
2012-09-03 11:03:37 +02:00
|
|
|
}; \
|
2012-10-17 09:12:04 +02:00
|
|
|
inline void PrintTo( name param, std::ostream* os) \
|
2012-09-03 11:03:37 +02:00
|
|
|
{ \
|
2012-10-17 09:12:04 +02:00
|
|
|
*os << #name << "(" << testing::PrintToString(static_cast< type >(param)) << ")"; \
|
2012-09-03 11:03:37 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
IMPLEMENT_PARAM_CLASS(Channels, int)
|
|
|
|
#endif // IMPLEMENT_PARAM_CLASS
|
|
|
|
#endif // MWC_TEST_UTILITY
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// MatchTemplate
|
|
|
|
#define ALL_TEMPLATE_METHODS testing::Values(TemplateMethod(cv::TM_SQDIFF), TemplateMethod(cv::TM_CCORR), TemplateMethod(cv::TM_CCOEFF), TemplateMethod(cv::TM_SQDIFF_NORMED), TemplateMethod(cv::TM_CCORR_NORMED), TemplateMethod(cv::TM_CCOEFF_NORMED))
|
|
|
|
|
|
|
|
IMPLEMENT_PARAM_CLASS(TemplateSize, cv::Size);
|
|
|
|
|
2012-10-11 10:22:47 +02:00
|
|
|
const char *TEMPLATE_METHOD_NAMES[6] = {"TM_SQDIFF", "TM_SQDIFF_NORMED", "TM_CCORR", "TM_CCORR_NORMED", "TM_CCOEFF", "TM_CCOEFF_NORMED"};
|
2012-09-03 11:03:37 +02:00
|
|
|
|
|
|
|
PARAM_TEST_CASE(MatchTemplate, cv::Size, TemplateSize, Channels, TemplateMethod)
|
|
|
|
{
|
2012-10-11 10:22:47 +02:00
|
|
|
cv::Size size;
|
|
|
|
cv::Size templ_size;
|
|
|
|
int cn;
|
|
|
|
int method;
|
|
|
|
//vector<cv::ocl::Info> oclinfo;
|
|
|
|
|
|
|
|
virtual void SetUp()
|
|
|
|
{
|
|
|
|
size = GET_PARAM(0);
|
|
|
|
templ_size = GET_PARAM(1);
|
|
|
|
cn = GET_PARAM(2);
|
|
|
|
method = GET_PARAM(3);
|
|
|
|
//int devnums = getDevice(oclinfo);
|
|
|
|
//CV_Assert(devnums > 0);
|
|
|
|
}
|
2012-09-03 11:03:37 +02:00
|
|
|
};
|
|
|
|
struct MatchTemplate8U : MatchTemplate {};
|
|
|
|
|
|
|
|
TEST_P(MatchTemplate8U, Performance)
|
|
|
|
{
|
2012-10-11 10:22:47 +02:00
|
|
|
std::cout << "Method: " << TEMPLATE_METHOD_NAMES[method] << std::endl;
|
|
|
|
std::cout << "Image Size: (" << size.width << ", " << size.height << ")" << std::endl;
|
|
|
|
std::cout << "Template Size: (" << templ_size.width << ", " << templ_size.height << ")" << std::endl;
|
|
|
|
std::cout << "Channels: " << cn << std::endl;
|
2012-09-03 11:03:37 +02:00
|
|
|
|
2012-10-11 10:22:47 +02:00
|
|
|
cv::Mat image = randomMat(size, CV_MAKETYPE(CV_8U, cn));
|
|
|
|
cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_8U, cn));
|
|
|
|
cv::Mat dst_gold;
|
|
|
|
cv::ocl::oclMat dst;
|
2012-09-03 11:03:37 +02:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2012-10-11 10:22:47 +02:00
|
|
|
double totalgputick = 0;
|
|
|
|
double totalgputick_kernel = 0;
|
2012-09-03 11:03:37 +02:00
|
|
|
|
2012-10-11 10:22:47 +02:00
|
|
|
double t1 = 0;
|
|
|
|
double t2 = 0;
|
|
|
|
for(int j = 0; j < LOOP_TIMES + 1; j ++)
|
|
|
|
{
|
|
|
|
|
|
|
|
t1 = (double)cvGetTickCount();//gpu start1
|
2012-09-03 11:03:37 +02:00
|
|
|
|
|
|
|
cv::ocl::oclMat ocl_image = cv::ocl::oclMat(image);//upload
|
2012-10-11 10:22:47 +02:00
|
|
|
cv::ocl::oclMat ocl_templ = cv::ocl::oclMat(templ);//upload
|
2012-09-03 11:03:37 +02:00
|
|
|
|
2012-10-11 10:22:47 +02:00
|
|
|
t2 = (double)cvGetTickCount(); //kernel
|
|
|
|
cv::ocl::matchTemplate(ocl_image, ocl_templ, dst, method);
|
|
|
|
t2 = (double)cvGetTickCount() - t2;//kernel
|
2012-09-03 11:03:37 +02:00
|
|
|
|
2012-10-11 10:22:47 +02:00
|
|
|
cv::Mat cpu_dst;
|
|
|
|
dst.download (cpu_dst);//download
|
2012-09-03 11:03:37 +02:00
|
|
|
|
2012-10-11 10:22:47 +02:00
|
|
|
t1 = (double)cvGetTickCount() - t1;//gpu end1
|
2012-09-03 11:03:37 +02:00
|
|
|
|
2012-10-11 10:22:47 +02:00
|
|
|
if(j == 0)
|
|
|
|
continue;
|
2012-09-03 11:03:37 +02:00
|
|
|
|
2012-10-11 10:22:47 +02:00
|
|
|
totalgputick = t1 + totalgputick;
|
|
|
|
totalgputick_kernel = t2 + totalgputick_kernel;
|
2012-09-03 11:03:37 +02:00
|
|
|
|
2012-10-11 10:22:47 +02:00
|
|
|
}
|
2012-09-03 11:03:37 +02:00
|
|
|
|
2012-10-11 10:22:47 +02:00
|
|
|
cout << "average gpu runtime is " << totalgputick / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl;
|
|
|
|
cout << "average gpu runtime without data transfer is " << totalgputick_kernel / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl;
|
2012-09-03 11:03:37 +02:00
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
struct MatchTemplate32F : MatchTemplate {};
|
|
|
|
TEST_P(MatchTemplate32F, Performance)
|
|
|
|
{
|
2012-10-11 10:22:47 +02:00
|
|
|
std::cout << "Method: " << TEMPLATE_METHOD_NAMES[method] << std::endl;
|
|
|
|
std::cout << "Image Size: (" << size.width << ", " << size.height << ")" << std::endl;
|
|
|
|
std::cout << "Template Size: (" << templ_size.width << ", " << templ_size.height << ")" << std::endl;
|
|
|
|
std::cout << "Channels: " << cn << std::endl;
|
|
|
|
cv::Mat image = randomMat(size, CV_MAKETYPE(CV_32F, cn));
|
|
|
|
cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_32F, cn));
|
2012-09-03 11:03:37 +02:00
|
|
|
|
2012-10-11 10:22:47 +02:00
|
|
|
cv::Mat dst_gold;
|
|
|
|
cv::ocl::oclMat dst;
|
2012-09-03 11:03:37 +02:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2012-10-11 10:22:47 +02:00
|
|
|
double totalgputick = 0;
|
|
|
|
double totalgputick_kernel = 0;
|
2012-09-03 11:03:37 +02:00
|
|
|
|
2012-10-11 10:22:47 +02:00
|
|
|
double t1 = 0;
|
|
|
|
double t2 = 0;
|
|
|
|
for(int j = 0; j < LOOP_TIMES; j ++)
|
|
|
|
{
|
2012-09-03 11:03:37 +02:00
|
|
|
|
2012-10-11 10:22:47 +02:00
|
|
|
t1 = (double)cvGetTickCount();//gpu start1
|
2012-09-03 11:03:37 +02:00
|
|
|
|
|
|
|
cv::ocl::oclMat ocl_image = cv::ocl::oclMat(image);//upload
|
2012-10-11 10:22:47 +02:00
|
|
|
cv::ocl::oclMat ocl_templ = cv::ocl::oclMat(templ);//upload
|
|
|
|
|
|
|
|
t2 = (double)cvGetTickCount(); //kernel
|
|
|
|
cv::ocl::matchTemplate(ocl_image, ocl_templ, dst, method);
|
|
|
|
t2 = (double)cvGetTickCount() - t2;//kernel
|
2012-09-03 11:03:37 +02:00
|
|
|
|
2012-10-11 10:22:47 +02:00
|
|
|
cv::Mat cpu_dst;
|
|
|
|
dst.download (cpu_dst);//download
|
2012-09-03 11:03:37 +02:00
|
|
|
|
2012-10-11 10:22:47 +02:00
|
|
|
t1 = (double)cvGetTickCount() - t1;//gpu end1
|
2012-09-03 11:03:37 +02:00
|
|
|
|
2012-10-11 10:22:47 +02:00
|
|
|
totalgputick = t1 + totalgputick;
|
2012-09-03 11:03:37 +02:00
|
|
|
|
2012-10-11 10:22:47 +02:00
|
|
|
totalgputick_kernel = t2 + totalgputick_kernel;
|
2012-09-03 11:03:37 +02:00
|
|
|
|
2012-10-11 10:22:47 +02:00
|
|
|
}
|
2012-09-03 11:03:37 +02:00
|
|
|
|
2012-10-11 10:22:47 +02:00
|
|
|
cout << "average gpu runtime is " << totalgputick / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl;
|
|
|
|
cout << "average gpu runtime without data transfer is " << totalgputick_kernel / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl;
|
2012-09-03 11:03:37 +02:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2012-10-11 10:22:47 +02:00
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MatchTemplate8U,
|
|
|
|
testing::Combine(
|
|
|
|
testing::Values(cv::Size(1280, 1024), cv::Size(MWIDTH, MHEIGHT), cv::Size(1800, 1500)),
|
|
|
|
testing::Values(TemplateSize(cv::Size(5, 5)), TemplateSize(cv::Size(16, 16))/*, TemplateSize(cv::Size(30, 30))*/),
|
|
|
|
testing::Values(Channels(1), Channels(4)/*, Channels(3)*/),
|
|
|
|
ALL_TEMPLATE_METHODS
|
|
|
|
)
|
|
|
|
);
|
2012-09-03 11:03:37 +02:00
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MatchTemplate32F, testing::Combine(
|
2012-10-11 10:22:47 +02:00
|
|
|
testing::Values(cv::Size(1280, 1024), cv::Size(MWIDTH, MHEIGHT), cv::Size(1800, 1500)),
|
|
|
|
testing::Values(TemplateSize(cv::Size(5, 5)), TemplateSize(cv::Size(16, 16))/*, TemplateSize(cv::Size(30, 30))*/),
|
|
|
|
testing::Values(Channels(1), Channels(4) /*, Channels(3)*/),
|
|
|
|
testing::Values(TemplateMethod(cv::TM_SQDIFF), TemplateMethod(cv::TM_CCORR))));
|
2012-09-03 11:03:37 +02:00
|
|
|
|
|
|
|
#endif //HAVE_OPENCL
|