opencv/modules/core/src/convert.cpp

981 lines
31 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
namespace cv
{
/****************************************************************************************\
* split *
\****************************************************************************************/
template<typename T> static void
splitC2_( const Mat& srcmat, Mat* dstmat )
{
Size size = getContinuousSize( srcmat, dstmat[0], dstmat[1] );
for( int y = 0; y < size.height; y++ )
{
const T* src = (const T*)(srcmat.data + srcmat.step*y);
T* dst0 = (T*)(dstmat[0].data + dstmat[0].step*y);
T* dst1 = (T*)(dstmat[1].data + dstmat[1].step*y);
for( int x = 0; x < size.width; x++ )
{
T t0 = src[x*2], t1 = src[x*2+1];
dst0[x] = t0; dst1[x] = t1;
}
}
}
template<typename T> static void
splitC3_( const Mat& srcmat, Mat* dstmat )
{
Size size = getContinuousSize( srcmat, dstmat[0], dstmat[1], dstmat[2] );
for( int y = 0; y < size.height; y++ )
{
const T* src = (const T*)(srcmat.data + srcmat.step*y);
T* dst0 = (T*)(dstmat[0].data + dstmat[0].step*y);
T* dst1 = (T*)(dstmat[1].data + dstmat[1].step*y);
T* dst2 = (T*)(dstmat[2].data + dstmat[2].step*y);
for( int x = 0; x < size.width; x++ )
{
T t0 = src[x*3], t1 = src[x*3+1], t2 = src[x*3+2];
dst0[x] = t0; dst1[x] = t1; dst2[x] = t2;
}
}
}
template<typename T> static void
splitC4_( const Mat& srcmat, Mat* dstmat )
{
Size size = getContinuousSize( srcmat, dstmat[0], dstmat[1], dstmat[2], dstmat[3] );
for( int y = 0; y < size.height; y++ )
{
const T* src = (const T*)(srcmat.data + srcmat.step*y);
T* dst0 = (T*)(dstmat[0].data + dstmat[0].step*y);
T* dst1 = (T*)(dstmat[1].data + dstmat[1].step*y);
T* dst2 = (T*)(dstmat[2].data + dstmat[2].step*y);
T* dst3 = (T*)(dstmat[3].data + dstmat[3].step*y);
for( int x = 0; x < size.width; x++ )
{
T t0 = src[x*4], t1 = src[x*4+1];
dst0[x] = t0; dst1[x] = t1;
t0 = src[x*4+2]; t1 = src[x*4+3];
dst2[x] = t0; dst3[x] = t1;
}
}
}
typedef void (*SplitFunc)(const Mat& src, Mat* dst);
void split(const Mat& src, Mat* mv)
{
static SplitFunc tab[] =
{
splitC2_<uchar>, splitC2_<ushort>, splitC2_<int>, 0, splitC2_<int64>,
splitC3_<uchar>, splitC3_<ushort>, splitC3_<int>, 0, splitC3_<int64>,
splitC4_<uchar>, splitC4_<ushort>, splitC4_<int>, 0, splitC4_<int64>
};
int i, depth = src.depth(), cn = src.channels();
Size size = src.size();
if( cn == 1 )
{
src.copyTo(mv[0]);
return;
}
for( i = 0; i < cn; i++ )
mv[i].create(src.size(), depth);
if( cn <= 4 )
{
SplitFunc func = tab[(cn-2)*5 + (src.elemSize1()>>1)];
CV_Assert( func != 0 );
func( src, mv );
}
else
{
vector<int> pairs(cn*2);
for( i = 0; i < cn; i++ )
{
pairs[i*2] = i;
pairs[i*2+1] = 0;
}
mixChannels( &src, 1, mv, cn, &pairs[0], cn );
}
}
/****************************************************************************************\
* merge *
\****************************************************************************************/
// input vector is made non-const to make sure that we do not copy Mat on each access
template<typename T> static void
mergeC2_( const Mat* srcmat, Mat& dstmat )
{
Size size = getContinuousSize( srcmat[0], srcmat[1], dstmat );
for( int y = 0; y < size.height; y++ )
{
const T* src0 = (const T*)(srcmat[0].data + srcmat[0].step*y);
const T* src1 = (const T*)(srcmat[1].data + srcmat[1].step*y);
T* dst = (T*)(dstmat.data + dstmat.step*y);
for( int x = 0; x < size.width; x++ )
{
T t0 = src0[x], t1 = src1[x];
dst[x*2] = t0; dst[x*2+1] = t1;
}
}
}
template<typename T> static void
mergeC3_( const Mat* srcmat, Mat& dstmat )
{
Size size = getContinuousSize( srcmat[0], srcmat[1], srcmat[2], dstmat );
for( int y = 0; y < size.height; y++ )
{
const T* src0 = (const T*)(srcmat[0].data + srcmat[0].step*y);
const T* src1 = (const T*)(srcmat[1].data + srcmat[1].step*y);
const T* src2 = (const T*)(srcmat[2].data + srcmat[2].step*y);
T* dst = (T*)(dstmat.data + dstmat.step*y);
for( int x = 0; x < size.width; x++ )
{
T t0 = src0[x], t1 = src1[x], t2 = src2[x];
dst[x*3] = t0; dst[x*3+1] = t1; dst[x*3+2] = t2;
}
}
}
template<typename T> static void
mergeC4_( const Mat* srcmat, Mat& dstmat )
{
Size size = getContinuousSize( srcmat[0], srcmat[1], srcmat[2], srcmat[3], dstmat );
for( int y = 0; y < size.height; y++ )
{
const T* src0 = (const T*)(srcmat[0].data + srcmat[0].step*y);
const T* src1 = (const T*)(srcmat[1].data + srcmat[1].step*y);
const T* src2 = (const T*)(srcmat[2].data + srcmat[2].step*y);
const T* src3 = (const T*)(srcmat[3].data + srcmat[3].step*y);
T* dst = (T*)(dstmat.data + dstmat.step*y);
for( int x = 0; x < size.width; x++ )
{
T t0 = src0[x], t1 = src1[x];
dst[x*4] = t0; dst[x*4+1] = t1;
t0 = src2[x]; t1 = src3[x];
dst[x*4+2] = t0; dst[x*4+3] = t1;
}
}
}
typedef void (*MergeFunc)(const Mat* src, Mat& dst);
void merge(const Mat* mv, size_t n, Mat& dst)
{
static MergeFunc tab[] =
{
mergeC2_<uchar>, mergeC2_<ushort>, mergeC2_<int>, 0, mergeC2_<int64>,
mergeC3_<uchar>, mergeC3_<ushort>, mergeC3_<int>, 0, mergeC3_<int64>,
mergeC4_<uchar>, mergeC4_<ushort>, mergeC4_<int>, 0, mergeC4_<int64>
};
size_t i;
CV_Assert( mv && n > 0 );
int depth = mv[0].depth();
bool allch1 = true;
int total = 0;
Size size = mv[0].size();
for( i = 0; i < n; i++ )
{
CV_Assert(mv[i].size() == size && mv[i].depth() == depth);
allch1 = allch1 && mv[i].channels() == 1;
total += mv[i].channels();
}
CV_Assert( 0 < total && total <= CV_CN_MAX );
if( total == 1 )
{
mv[0].copyTo(dst);
return;
}
dst.create(size, CV_MAKETYPE(depth, total));
if( allch1 && total <= 4 )
{
MergeFunc func = tab[(total-2)*5 + (CV_ELEM_SIZE(depth)>>1)];
CV_Assert( func != 0 );
func( mv, dst );
}
else
{
vector<int> pairs(total*2);
int j, k, ni=0;
for( i = 0, j = 0; i < n; i++, j += ni )
{
ni = mv[i].channels();
for( k = 0; k < ni; k++ )
{
pairs[(j+k)*2] = j + k;
pairs[(j+k)*2+1] = j + k;
}
}
mixChannels( mv, n, &dst, 1, &pairs[0], total );
}
}
/****************************************************************************************\
* Generalized split/merge: mixing channels *
\****************************************************************************************/
template<typename T> static void
mixChannels_( const void** _src, const int* sdelta0,
const int* sdelta1, void** _dst,
const int* ddelta0, const int* ddelta1,
int n, Size size )
{
const T** src = (const T**)_src;
T** dst = (T**)_dst;
int i, k;
int block_size0 = n == 1 ? size.width : 1024;
for( ; size.height--; )
{
int remaining = size.width;
for( ; remaining > 0; )
{
int block_size = MIN( remaining, block_size0 );
for( k = 0; k < n; k++ )
{
const T* s = src[k];
T* d = dst[k];
int ds = sdelta1[k], dd = ddelta1[k];
if( s )
{
for( i = 0; i <= block_size - 2; i += 2, s += ds*2, d += dd*2 )
{
T t0 = s[0], t1 = s[ds];
d[0] = t0; d[dd] = t1;
}
if( i < block_size )
d[0] = s[0], s += ds, d += dd;
src[k] = s;
}
else
{
for( i=0; i <= block_size-2; i+=2, d+=dd*2 )
d[0] = d[dd] = 0;
if( i < block_size )
d[0] = 0, d += dd;
}
dst[k] = d;
}
remaining -= block_size;
}
for( k = 0; k < n; k++ )
src[k] += sdelta0[k], dst[k] += ddelta0[k];
}
}
typedef void (*MixChannelsFunc)( const void** src, const int* sdelta0,
const int* sdelta1, void** dst, const int* ddelta0, const int* ddelta1, int n, Size size );
void mixChannels( const Mat* src, size_t nsrcs, Mat* dst, size_t ndsts, const int* fromTo, size_t npairs )
{
size_t i;
if( npairs == 0 )
return;
CV_Assert( src && nsrcs > 0 && dst && ndsts > 0 && fromTo && npairs > 0 );
int depth = dst[0].depth(), esz1 = (int)dst[0].elemSize1();
Size size = dst[0].size();
AutoBuffer<uchar> buf(npairs*(sizeof(void*)*2 + sizeof(int)*4));
void** srcs = (void**)(uchar*)buf;
void** dsts = srcs + npairs;
int *s0 = (int*)(dsts + npairs), *s1 = s0 + npairs, *d0 = s1 + npairs, *d1 = d0 + npairs;
bool isContinuous = true;
for( i = 0; i < npairs; i++ )
{
int i0 = fromTo[i*2], i1 = fromTo[i*2+1], j;
if( i0 >= 0 )
{
for( j = 0; j < nsrcs; i0 -= src[j].channels(), j++ )
if( i0 < src[j].channels() )
break;
CV_Assert(j < nsrcs && src[j].size() == size && src[j].depth() == depth);
isContinuous = isContinuous && src[j].isContinuous();
srcs[i] = src[j].data + i0*esz1;
s1[i] = src[j].channels(); s0[i] = (int)src[j].step/esz1 - size.width*src[j].channels();
}
else
{
srcs[i] = 0; s1[i] = s0[i] = 0;
}
for( j = 0; j < ndsts; i1 -= dst[j].channels(), j++ )
if( i1 < dst[j].channels() )
break;
CV_Assert(i1 >= 0 && j < ndsts && dst[j].size() == size && dst[j].depth() == depth);
isContinuous = isContinuous && dst[j].isContinuous();
dsts[i] = dst[j].data + i1*esz1;
d1[i] = dst[j].channels(); d0[i] = (int)dst[j].step/esz1 - size.width*dst[j].channels();
}
MixChannelsFunc func = 0;
if( esz1 == 1 )
func = mixChannels_<uchar>;
else if( esz1 == 2 )
func = mixChannels_<ushort>;
else if( esz1 == 4 )
func = mixChannels_<int>;
else if( esz1 == 8 )
func = mixChannels_<int64>;
else
CV_Error( CV_StsUnsupportedFormat, "" );
if( isContinuous )
{
size.width *= size.height;
size.height = 1;
}
func( (const void**)srcs, s0, s1, dsts, d0, d1, (int)npairs, size );
}
/****************************************************************************************\
* convertScale[Abs] *
\****************************************************************************************/
template<typename sT, typename dT> struct OpCvt
{
typedef sT type1;
typedef dT rtype;
rtype operator()(type1 x) const { return saturate_cast<rtype>(x); }
};
template<typename sT, typename dT, int _fbits> struct OpCvtFixPt
{
typedef sT type1;
typedef dT rtype;
enum { fbits = _fbits };
rtype operator()(type1 x) const
{
return saturate_cast<rtype>((x + (1<<(fbits-1)))>>fbits);
}
};
template<typename sT, typename dT> struct OpCvtAbs
{
typedef sT type1;
typedef dT rtype;
rtype operator()(type1 x) const { return saturate_cast<rtype>(std::abs(x)); }
};
template<typename sT, typename dT, int _fbits> struct OpCvtAbsFixPt
{
typedef sT type1;
typedef dT rtype;
enum { fbits = _fbits };
rtype operator()(type1 x) const
{
return saturate_cast<rtype>((std::abs(x) + (1<<(fbits-1)))>>fbits);
}
};
template<class Op> static void
cvtScaleLUT_( const Mat& srcmat, Mat& dstmat, double scale, double shift )
{
Op op;
typedef typename Op::rtype DT;
DT lut[256];
int i, sdepth = srcmat.depth(), ddepth = dstmat.depth();
double val = shift;
for( i = 0; i < 128; i++, val += scale )
lut[i] = op(val);
if( sdepth == CV_8S )
val = shift*2 - val;
for( ; i < 256; i++, val += scale )
lut[i] = op(val);
Mat _srcmat = srcmat;
if( sdepth == CV_8S )
_srcmat = Mat(srcmat.size(), CV_8UC(srcmat.channels()), srcmat.data, srcmat.step);
LUT(_srcmat, Mat(1, 256, ddepth, lut), dstmat);
}
template<typename T, class Op> static void
cvtScale_( const Mat& srcmat, Mat& dstmat, double _scale, double _shift )
{
Op op;
typedef typename Op::type1 WT;
typedef typename Op::rtype DT;
Size size = getContinuousSize( srcmat, dstmat, srcmat.channels() );
WT scale = saturate_cast<WT>(_scale), shift = saturate_cast<WT>(_shift);
for( int y = 0; y < size.height; y++ )
{
const T* src = (const T*)(srcmat.data + srcmat.step*y);
DT* dst = (DT*)(dstmat.data + dstmat.step*y);
int x = 0;
for( ; x <= size.width - 4; x += 4 )
{
DT t0, t1;
t0 = op(src[x]*scale + shift);
t1 = op(src[x+1]*scale + shift);
dst[x] = t0; dst[x+1] = t1;
t0 = op(src[x+2]*scale + shift);
t1 = op(src[x+3]*scale + shift);
dst[x+2] = t0; dst[x+3] = t1;
}
for( ; x < size.width; x++ )
dst[x] = op(src[x]*scale + shift);
}
}
template<typename T, class OpFixPt, class Op, int MAX_SHIFT> static void
cvtScaleInt_( const Mat& srcmat, Mat& dstmat, double _scale, double _shift )
{
if( std::abs(_scale) > 1 || std::abs(_shift) > MAX_SHIFT )
{
cvtScale_<T, Op>(srcmat, dstmat, _scale, _shift);
return;
}
OpFixPt op;
typedef typename OpFixPt::rtype DT;
Size size = getContinuousSize( srcmat, dstmat, srcmat.channels() );
int scale = saturate_cast<int>(_scale*(1<<OpFixPt::fbits)),
shift = saturate_cast<int>(_shift*(1<<OpFixPt::fbits));
for( int y = 0; y < size.height; y++ )
{
const T* src = (const T*)(srcmat.data + srcmat.step*y);
DT* dst = (DT*)(dstmat.data + dstmat.step*y);
int x = 0;
for( ; x <= size.width - 4; x += 4 )
{
DT t0, t1;
t0 = op(src[x]*scale + shift);
t1 = op(src[x+1]*scale + shift);
dst[x] = t0; dst[x+1] = t1;
t0 = op(src[x+2]*scale + shift);
t1 = op(src[x+3]*scale + shift);
dst[x+2] = t0; dst[x+3] = t1;
}
for( ; x < size.width; x++ )
dst[x] = op(src[x]*scale + shift);
}
}
template<typename T, typename DT> static void
cvt_( const Mat& srcmat, Mat& dstmat )
{
Size size = getContinuousSize( srcmat, dstmat, srcmat.channels() );
for( int y = 0; y < size.height; y++ )
{
const T* src = (const T*)(srcmat.data + srcmat.step*y);
DT* dst = (DT*)(dstmat.data + dstmat.step*y);
int x = 0;
for( ; x <= size.width - 4; x += 4 )
{
DT t0, t1;
t0 = saturate_cast<DT>(src[x]);
t1 = saturate_cast<DT>(src[x+1]);
dst[x] = t0; dst[x+1] = t1;
t0 = saturate_cast<DT>(src[x+2]);
t1 = saturate_cast<DT>(src[x+3]);
dst[x+2] = t0; dst[x+3] = t1;
}
for( ; x < size.width; x++ )
dst[x] = saturate_cast<DT>(src[x]);
}
}
static const int FBITS = 15;
#define ICV_SCALE(x) CV_DESCALE((x), FBITS)
typedef void (*CvtFunc)( const Mat& src, Mat& dst );
typedef void (*CvtScaleFunc)( const Mat& src, Mat& dst, double scale, double shift );
void convertScaleAbs( const Mat& src, Mat& dst, double scale, double shift )
{
static CvtScaleFunc tab[] =
{
cvtScaleLUT_<OpCvtAbs<double, uchar> >,
cvtScaleLUT_<OpCvtAbs<double, uchar> >,
cvtScaleInt_<ushort, OpCvtAbsFixPt<int, uchar, FBITS>, OpCvtAbs<float, uchar>, 0>,
cvtScaleInt_<short, OpCvtAbsFixPt<int, uchar, FBITS>, OpCvtAbs<float, uchar>, 1<<15>,
cvtScale_<int, OpCvtAbs<double, uchar> >,
cvtScale_<float, OpCvtAbs<float, uchar> >,
cvtScale_<double, OpCvtAbs<double, uchar> >, 0
};
Mat src0 = src;
dst.create( src.size(), CV_8UC(src.channels()) );
CvtScaleFunc func = tab[src0.depth()];
CV_Assert( func != 0 );
func( src0, dst, scale, shift );
}
void Mat::convertTo(Mat& dst, int _type, double alpha, double beta) const
{
static CvtFunc tab[8][8] =
{
{0, cvt_<uchar, schar>, cvt_<uchar, ushort>, cvt_<uchar, short>,
cvt_<uchar, int>, cvt_<uchar, float>, cvt_<uchar, double>, 0},
{cvt_<schar, uchar>, 0, cvt_<schar, ushort>, cvt_<schar, short>,
cvt_<schar, int>, cvt_<schar, float>, cvt_<schar, double>, 0},
{cvt_<ushort, uchar>, cvt_<ushort, schar>, 0, cvt_<ushort, short>,
cvt_<ushort, int>, cvt_<ushort, float>, cvt_<ushort, double>, 0},
{cvt_<short, uchar>, cvt_<short, schar>, cvt_<short, ushort>, 0,
cvt_<short, int>, cvt_<short, float>, cvt_<short, double>, 0},
{cvt_<int, uchar>, cvt_<int, schar>, cvt_<int, ushort>,
cvt_<int, short>, 0, cvt_<int, float>, cvt_<int, double>, 0},
{cvt_<float, uchar>, cvt_<float, schar>, cvt_<float, ushort>,
cvt_<float, short>, cvt_<float, int>, 0, cvt_<float, double>, 0},
{cvt_<double, uchar>, cvt_<double, schar>, cvt_<double, ushort>,
cvt_<double, short>, cvt_<double, int>, cvt_<double, float>, 0, 0},
{0,0,0,0,0,0,0,0}
};
static CvtScaleFunc stab[8][8] =
{
{
cvtScaleLUT_<OpCvt<double, uchar> >,
cvtScaleLUT_<OpCvt<double, schar> >,
cvtScaleLUT_<OpCvt<double, ushort> >,
cvtScaleLUT_<OpCvt<double, short> >,
cvtScaleLUT_<OpCvt<double, int> >,
cvtScaleLUT_<OpCvt<double, float> >,
cvtScaleLUT_<OpCvt<double, double> >, 0
},
{
// this is copy of the above section,
// since cvScaleLUT handles both 8u->? and 8s->? cases
cvtScaleLUT_<OpCvt<double, uchar> >,
cvtScaleLUT_<OpCvt<double, schar> >,
cvtScaleLUT_<OpCvt<double, ushort> >,
cvtScaleLUT_<OpCvt<double, short> >,
cvtScaleLUT_<OpCvt<double, int> >,
cvtScaleLUT_<OpCvt<double, float> >,
cvtScaleLUT_<OpCvt<double, double> >, 0,
},
{
cvtScaleInt_<ushort, OpCvtFixPt<int, uchar, FBITS>, OpCvt<float, uchar>, 0>,
cvtScaleInt_<ushort, OpCvtFixPt<int, schar, FBITS>, OpCvt<float, schar>, 0>,
cvtScaleInt_<ushort, OpCvtFixPt<int, ushort, FBITS>, OpCvt<float, ushort>, 0>,
cvtScaleInt_<ushort, OpCvtFixPt<int, short, FBITS>, OpCvt<float, short>, 0>,
cvtScale_<ushort, OpCvt<double, int> >,
cvtScale_<ushort, OpCvt<float, float> >,
cvtScale_<ushort, OpCvt<double, double> >, 0,
},
{
cvtScaleInt_<short, OpCvtFixPt<int, uchar, FBITS>, OpCvt<float, uchar>, 1<<15>,
cvtScaleInt_<short, OpCvtFixPt<int, schar, FBITS>, OpCvt<float, schar>, 1<<15>,
cvtScaleInt_<short, OpCvtFixPt<int, ushort, FBITS>, OpCvt<float, ushort>, 1<<15>,
cvtScaleInt_<short, OpCvtFixPt<int, short, FBITS>, OpCvt<float, short>, 1<<15>,
cvtScale_<short, OpCvt<double, int> >,
cvtScale_<short, OpCvt<float, float> >,
cvtScale_<short, OpCvt<double, double> >, 0,
},
{
cvtScale_<int, OpCvt<float, uchar> >,
cvtScale_<int, OpCvt<float, schar> >,
cvtScale_<int, OpCvt<double, ushort> >,
cvtScale_<int, OpCvt<double, short> >,
cvtScale_<int, OpCvt<double, int> >,
cvtScale_<int, OpCvt<float, float> >,
cvtScale_<int, OpCvt<double, double> >, 0,
},
{
cvtScale_<float, OpCvt<float, uchar> >,
cvtScale_<float, OpCvt<float, schar> >,
cvtScale_<float, OpCvt<float, ushort> >,
cvtScale_<float, OpCvt<float, short> >,
cvtScale_<float, OpCvt<float, int> >,
cvtScale_<float, OpCvt<float, float> >,
cvtScale_<float, OpCvt<double, double> >, 0,
},
{
cvtScale_<double, OpCvt<double, uchar> >,
cvtScale_<double, OpCvt<double, schar> >,
cvtScale_<double, OpCvt<double, ushort> >,
cvtScale_<double, OpCvt<double, short> >,
cvtScale_<double, OpCvt<double, int> >,
cvtScale_<double, OpCvt<double, float> >,
cvtScale_<double, OpCvt<double, double> >, 0,
}
};
bool noScale = fabs(alpha-1) < DBL_EPSILON && fabs(beta) < DBL_EPSILON;
if( _type < 0 )
_type = type();
else
_type = CV_MAKETYPE(CV_MAT_DEPTH(_type), channels());
int sdepth = depth(), ddepth = CV_MAT_DEPTH(_type);
if( sdepth == ddepth && noScale )
{
copyTo(dst);
return;
}
Mat temp;
const Mat* psrc = this;
if( sdepth != ddepth && psrc == &dst )
psrc = &(temp = *this);
dst.create( size(), _type );
if( noScale )
{
CvtFunc func = tab[sdepth][ddepth];
CV_Assert( func != 0 );
func( *psrc, dst );
}
else
{
CvtScaleFunc func = stab[sdepth][ddepth];
CV_Assert( func != 0 );
func( *psrc, dst, alpha, beta );
}
}
/****************************************************************************************\
* LUT Transform *
\****************************************************************************************/
template<typename T> static void
LUT8u( const Mat& srcmat, Mat& dstmat, const Mat& lut )
{
int cn = lut.channels();
int max_block_size = (1 << 10)*cn;
const T* _lut = (const T*)lut.data;
T lutp[4][256];
int y, i, k;
Size size = getContinuousSize( srcmat, dstmat, srcmat.channels() );
if( cn == 1 )
{
for( y = 0; y < size.height; y++ )
{
const uchar* src = srcmat.data + srcmat.step*y;
T* dst = (T*)(dstmat.data + dstmat.step*y);
for( i = 0; i < size.width; i++ )
dst[i] = _lut[src[i]];
}
return;
}
if( size.width*size.height < 256 )
{
for( y = 0; y < size.height; y++ )
{
const uchar* src = srcmat.data + srcmat.step*y;
T* dst = (T*)(dstmat.data + dstmat.step*y);
for( k = 0; k < cn; k++ )
for( i = 0; i < size.width; i += cn )
dst[i+k] = _lut[src[i+k]*cn+k];
}
return;
}
/* repack the lut to planar layout */
for( k = 0; k < cn; k++ )
for( i = 0; i < 256; i++ )
lutp[k][i] = _lut[i*cn+k];
for( y = 0; y < size.height; y++ )
{
const uchar* src = srcmat.data + srcmat.step*y;
T* dst = (T*)(dstmat.data + dstmat.step*y);
for( i = 0; i < size.width; )
{
int j, limit = std::min(size.width, i + max_block_size);
for( k = 0; k < cn; k++, src++, dst++ )
{
const T* lut = lutp[k];
for( j = i; j <= limit - cn*2; j += cn*2 )
{
T t0 = lut[src[j]];
T t1 = lut[src[j+cn]];
dst[j] = t0; dst[j+cn] = t1;
}
for( ; j < limit; j += cn )
dst[j] = lut[src[j]];
}
src -= cn;
dst -= cn;
i = limit;
}
}
}
typedef void (*LUTFunc)( const Mat& src, Mat& dst, const Mat& lut );
void LUT( const Mat& src, const Mat& lut, Mat& dst )
{
int cn = src.channels(), esz1 = (int)lut.elemSize1();
CV_Assert( (lut.channels() == cn || lut.channels() == 1) &&
lut.rows*lut.cols == 256 && lut.isContinuous() &&
(src.depth() == CV_8U || src.depth() == CV_8S) );
dst.create( src.size(), CV_MAKETYPE(lut.depth(), cn));
LUTFunc func = 0;
if( esz1 == 1 )
func = LUT8u<uchar>;
else if( esz1 == 2 )
func = LUT8u<ushort>;
else if( esz1 == 4 )
func = LUT8u<int>;
else if( esz1 == 8 )
func = LUT8u<int64>;
else
CV_Error(CV_StsUnsupportedFormat, "");
func( src, dst, lut );
}
void normalize( const Mat& src, Mat& dst, double a, double b,
int norm_type, int rtype, const Mat& mask )
{
double scale = 1, shift = 0;
if( norm_type == CV_MINMAX )
{
double smin = 0, smax = 0;
double dmin = MIN( a, b ), dmax = MAX( a, b );
minMaxLoc( src, &smin, &smax, 0, 0, mask );
scale = (dmax - dmin)*(smax - smin > DBL_EPSILON ? 1./(smax - smin) : 0);
shift = dmin - smin*scale;
}
else if( norm_type == CV_L2 || norm_type == CV_L1 || norm_type == CV_C )
{
scale = norm( src, norm_type, mask );
scale = scale > DBL_EPSILON ? a/scale : 0.;
shift = 0;
}
else
CV_Error( CV_StsBadArg, "Unknown/unsupported norm type" );
if( !mask.data )
src.convertTo( dst, rtype, scale, shift );
else
{
Mat temp;
src.convertTo( temp, rtype, scale, shift );
temp.copyTo( dst, mask );
}
}
}
CV_IMPL void
cvSplit( const void* srcarr, void* dstarr0, void* dstarr1, void* dstarr2, void* dstarr3 )
{
void* dptrs[] = { dstarr0, dstarr1, dstarr2, dstarr3 };
cv::Mat src = cv::cvarrToMat(srcarr);
int i, j, nz = 0;
for( i = 0; i < 4; i++ )
nz += dptrs[i] != 0;
CV_Assert( nz > 0 );
cv::vector<cv::Mat> dvec(nz);
cv::vector<int> pairs(nz*2);
for( i = j = 0; i < 4; i++ )
{
if( dptrs[i] != 0 )
{
dvec[j] = cv::cvarrToMat(dptrs[i]);
CV_Assert( dvec[j].size() == src.size() &&
dvec[j].depth() == src.depth() &&
dvec[j].channels() == 1 && i < src.channels() );
pairs[j*2] = i;
pairs[j*2+1] = j;
j++;
}
}
if( nz == src.channels() )
cv::split( src, dvec );
else
{
cv::mixChannels( &src, 1, &dvec[0], nz, &pairs[0], nz );
}
}
CV_IMPL void
cvMerge( const void* srcarr0, const void* srcarr1, const void* srcarr2,
const void* srcarr3, void* dstarr )
{
const void* sptrs[] = { srcarr0, srcarr1, srcarr2, srcarr3 };
cv::Mat dst = cv::cvarrToMat(dstarr);
int i, j, nz = 0;
for( i = 0; i < 4; i++ )
nz += sptrs[i] != 0;
CV_Assert( nz > 0 );
cv::vector<cv::Mat> svec(nz);
cv::vector<int> pairs(nz*2);
for( i = j = 0; i < 4; i++ )
{
if( sptrs[i] != 0 )
{
svec[j] = cv::cvarrToMat(sptrs[i]);
CV_Assert( svec[j].size() == dst.size() &&
svec[j].depth() == dst.depth() &&
svec[j].channels() == 1 && i < dst.channels() );
pairs[j*2] = j;
pairs[j*2+1] = i;
j++;
}
}
if( nz == dst.channels() )
cv::merge( svec, dst );
else
{
cv::mixChannels( &svec[0], nz, &dst, 1, &pairs[0], nz );
}
}
CV_IMPL void
cvMixChannels( const CvArr** src, int src_count,
CvArr** dst, int dst_count,
const int* from_to, int pair_count )
{
cv::AutoBuffer<cv::Mat, 32> buf;
int i;
for( i = 0; i < src_count; i++ )
buf[i] = cv::cvarrToMat(src[i]);
for( i = 0; i < dst_count; i++ )
buf[i+src_count] = cv::cvarrToMat(dst[i]);
cv::mixChannels(&buf[0], src_count, &buf[src_count], dst_count, from_to, pair_count);
}
CV_IMPL void
cvConvertScaleAbs( const void* srcarr, void* dstarr,
double scale, double shift )
{
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
CV_Assert( src.size() == dst.size() && dst.type() == CV_8UC(src.channels()));
cv::convertScaleAbs( src, dst, scale, shift );
}
CV_IMPL void
cvConvertScale( const void* srcarr, void* dstarr,
double scale, double shift )
{
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
CV_Assert( src.size() == dst.size() && src.channels() == dst.channels() );
src.convertTo(dst, dst.type(), scale, shift);
}
CV_IMPL void cvLUT( const void* srcarr, void* dstarr, const void* lutarr )
{
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), lut = cv::cvarrToMat(lutarr);
CV_Assert( dst.size() == src.size() && dst.type() == CV_MAKETYPE(lut.depth(), src.channels()) );
cv::LUT( src, lut, dst );
}
CV_IMPL void cvNormalize( const CvArr* srcarr, CvArr* dstarr,
double a, double b, int norm_type, const CvArr* maskarr )
{
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), mask;
if( maskarr )
mask = cv::cvarrToMat(maskarr);
CV_Assert( dst.size() == src.size() && src.channels() == dst.channels() );
cv::normalize( src, dst, a, b, norm_type, dst.type(), mask );
}
/* End of file. */