348 lines
10 KiB
C
348 lines
10 KiB
C
|
#include "clapack.h"
|
||
|
|
||
|
/* Table of constant values */
|
||
|
|
||
|
static integer c__1 = 1;
|
||
|
static integer c_n1 = -1;
|
||
|
static integer c__3 = 3;
|
||
|
static integer c__2 = 2;
|
||
|
static real c_b22 = -1.f;
|
||
|
static real c_b23 = 1.f;
|
||
|
|
||
|
/* Subroutine */ int ssytrd_(char *uplo, integer *n, real *a, integer *lda,
|
||
|
real *d__, real *e, real *tau, real *work, integer *lwork, integer *
|
||
|
info)
|
||
|
{
|
||
|
/* System generated locals */
|
||
|
integer a_dim1, a_offset, i__1, i__2, i__3;
|
||
|
|
||
|
/* Local variables */
|
||
|
integer i__, j, nb, kk, nx, iws;
|
||
|
extern logical lsame_(char *, char *);
|
||
|
integer nbmin, iinfo;
|
||
|
logical upper;
|
||
|
extern /* Subroutine */ int ssytd2_(char *, integer *, real *, integer *,
|
||
|
real *, real *, real *, integer *), ssyr2k_(char *, char *
|
||
|
, integer *, integer *, real *, real *, integer *, real *,
|
||
|
integer *, real *, real *, integer *), xerbla_(
|
||
|
char *, integer *);
|
||
|
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
|
||
|
integer *, integer *);
|
||
|
extern /* Subroutine */ int slatrd_(char *, integer *, integer *, real *,
|
||
|
integer *, real *, real *, real *, integer *);
|
||
|
integer ldwork, lwkopt;
|
||
|
logical lquery;
|
||
|
|
||
|
|
||
|
/* -- LAPACK routine (version 3.1) -- */
|
||
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
||
|
/* November 2006 */
|
||
|
|
||
|
/* .. Scalar Arguments .. */
|
||
|
/* .. */
|
||
|
/* .. Array Arguments .. */
|
||
|
/* .. */
|
||
|
|
||
|
/* Purpose */
|
||
|
/* ======= */
|
||
|
|
||
|
/* SSYTRD reduces a real symmetric matrix A to real symmetric */
|
||
|
/* tridiagonal form T by an orthogonal similarity transformation: */
|
||
|
/* Q**T * A * Q = T. */
|
||
|
|
||
|
/* Arguments */
|
||
|
/* ========= */
|
||
|
|
||
|
/* UPLO (input) CHARACTER*1 */
|
||
|
/* = 'U': Upper triangle of A is stored; */
|
||
|
/* = 'L': Lower triangle of A is stored. */
|
||
|
|
||
|
/* N (input) INTEGER */
|
||
|
/* The order of the matrix A. N >= 0. */
|
||
|
|
||
|
/* A (input/output) REAL array, dimension (LDA,N) */
|
||
|
/* On entry, the symmetric matrix A. If UPLO = 'U', the leading */
|
||
|
/* N-by-N upper triangular part of A contains the upper */
|
||
|
/* triangular part of the matrix A, and the strictly lower */
|
||
|
/* triangular part of A is not referenced. If UPLO = 'L', the */
|
||
|
/* leading N-by-N lower triangular part of A contains the lower */
|
||
|
/* triangular part of the matrix A, and the strictly upper */
|
||
|
/* triangular part of A is not referenced. */
|
||
|
/* On exit, if UPLO = 'U', the diagonal and first superdiagonal */
|
||
|
/* of A are overwritten by the corresponding elements of the */
|
||
|
/* tridiagonal matrix T, and the elements above the first */
|
||
|
/* superdiagonal, with the array TAU, represent the orthogonal */
|
||
|
/* matrix Q as a product of elementary reflectors; if UPLO */
|
||
|
/* = 'L', the diagonal and first subdiagonal of A are over- */
|
||
|
/* written by the corresponding elements of the tridiagonal */
|
||
|
/* matrix T, and the elements below the first subdiagonal, with */
|
||
|
/* the array TAU, represent the orthogonal matrix Q as a product */
|
||
|
/* of elementary reflectors. See Further Details. */
|
||
|
|
||
|
/* LDA (input) INTEGER */
|
||
|
/* The leading dimension of the array A. LDA >= max(1,N). */
|
||
|
|
||
|
/* D (output) REAL array, dimension (N) */
|
||
|
/* The diagonal elements of the tridiagonal matrix T: */
|
||
|
/* D(i) = A(i,i). */
|
||
|
|
||
|
/* E (output) REAL array, dimension (N-1) */
|
||
|
/* The off-diagonal elements of the tridiagonal matrix T: */
|
||
|
/* E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. */
|
||
|
|
||
|
/* TAU (output) REAL array, dimension (N-1) */
|
||
|
/* The scalar factors of the elementary reflectors (see Further */
|
||
|
/* Details). */
|
||
|
|
||
|
/* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
|
||
|
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
|
||
|
|
||
|
/* LWORK (input) INTEGER */
|
||
|
/* The dimension of the array WORK. LWORK >= 1. */
|
||
|
/* For optimum performance LWORK >= N*NB, where NB is the */
|
||
|
/* optimal blocksize. */
|
||
|
|
||
|
/* If LWORK = -1, then a workspace query is assumed; the routine */
|
||
|
/* only calculates the optimal size of the WORK array, returns */
|
||
|
/* this value as the first entry of the WORK array, and no error */
|
||
|
/* message related to LWORK is issued by XERBLA. */
|
||
|
|
||
|
/* INFO (output) INTEGER */
|
||
|
/* = 0: successful exit */
|
||
|
/* < 0: if INFO = -i, the i-th argument had an illegal value */
|
||
|
|
||
|
/* Further Details */
|
||
|
/* =============== */
|
||
|
|
||
|
/* If UPLO = 'U', the matrix Q is represented as a product of elementary */
|
||
|
/* reflectors */
|
||
|
|
||
|
/* Q = H(n-1) . . . H(2) H(1). */
|
||
|
|
||
|
/* Each H(i) has the form */
|
||
|
|
||
|
/* H(i) = I - tau * v * v' */
|
||
|
|
||
|
/* where tau is a real scalar, and v is a real vector with */
|
||
|
/* v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in */
|
||
|
/* A(1:i-1,i+1), and tau in TAU(i). */
|
||
|
|
||
|
/* If UPLO = 'L', the matrix Q is represented as a product of elementary */
|
||
|
/* reflectors */
|
||
|
|
||
|
/* Q = H(1) H(2) . . . H(n-1). */
|
||
|
|
||
|
/* Each H(i) has the form */
|
||
|
|
||
|
/* H(i) = I - tau * v * v' */
|
||
|
|
||
|
/* where tau is a real scalar, and v is a real vector with */
|
||
|
/* v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), */
|
||
|
/* and tau in TAU(i). */
|
||
|
|
||
|
/* The contents of A on exit are illustrated by the following examples */
|
||
|
/* with n = 5: */
|
||
|
|
||
|
/* if UPLO = 'U': if UPLO = 'L': */
|
||
|
|
||
|
/* ( d e v2 v3 v4 ) ( d ) */
|
||
|
/* ( d e v3 v4 ) ( e d ) */
|
||
|
/* ( d e v4 ) ( v1 e d ) */
|
||
|
/* ( d e ) ( v1 v2 e d ) */
|
||
|
/* ( d ) ( v1 v2 v3 e d ) */
|
||
|
|
||
|
/* where d and e denote diagonal and off-diagonal elements of T, and vi */
|
||
|
/* denotes an element of the vector defining H(i). */
|
||
|
|
||
|
/* ===================================================================== */
|
||
|
|
||
|
/* .. Parameters .. */
|
||
|
/* .. */
|
||
|
/* .. Local Scalars .. */
|
||
|
/* .. */
|
||
|
/* .. External Subroutines .. */
|
||
|
/* .. */
|
||
|
/* .. Intrinsic Functions .. */
|
||
|
/* .. */
|
||
|
/* .. External Functions .. */
|
||
|
/* .. */
|
||
|
/* .. Executable Statements .. */
|
||
|
|
||
|
/* Test the input parameters */
|
||
|
|
||
|
/* Parameter adjustments */
|
||
|
a_dim1 = *lda;
|
||
|
a_offset = 1 + a_dim1;
|
||
|
a -= a_offset;
|
||
|
--d__;
|
||
|
--e;
|
||
|
--tau;
|
||
|
--work;
|
||
|
|
||
|
/* Function Body */
|
||
|
*info = 0;
|
||
|
upper = lsame_(uplo, "U");
|
||
|
lquery = *lwork == -1;
|
||
|
if (! upper && ! lsame_(uplo, "L")) {
|
||
|
*info = -1;
|
||
|
} else if (*n < 0) {
|
||
|
*info = -2;
|
||
|
} else if (*lda < max(1,*n)) {
|
||
|
*info = -4;
|
||
|
} else if (*lwork < 1 && ! lquery) {
|
||
|
*info = -9;
|
||
|
}
|
||
|
|
||
|
if (*info == 0) {
|
||
|
|
||
|
/* Determine the block size. */
|
||
|
|
||
|
nb = ilaenv_(&c__1, "SSYTRD", uplo, n, &c_n1, &c_n1, &c_n1);
|
||
|
lwkopt = *n * nb;
|
||
|
work[1] = (real) lwkopt;
|
||
|
}
|
||
|
|
||
|
if (*info != 0) {
|
||
|
i__1 = -(*info);
|
||
|
xerbla_("SSYTRD", &i__1);
|
||
|
return 0;
|
||
|
} else if (lquery) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Quick return if possible */
|
||
|
|
||
|
if (*n == 0) {
|
||
|
work[1] = 1.f;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
nx = *n;
|
||
|
iws = 1;
|
||
|
if (nb > 1 && nb < *n) {
|
||
|
|
||
|
/* Determine when to cross over from blocked to unblocked code */
|
||
|
/* (last block is always handled by unblocked code). */
|
||
|
|
||
|
/* Computing MAX */
|
||
|
i__1 = nb, i__2 = ilaenv_(&c__3, "SSYTRD", uplo, n, &c_n1, &c_n1, &
|
||
|
c_n1);
|
||
|
nx = max(i__1,i__2);
|
||
|
if (nx < *n) {
|
||
|
|
||
|
/* Determine if workspace is large enough for blocked code. */
|
||
|
|
||
|
ldwork = *n;
|
||
|
iws = ldwork * nb;
|
||
|
if (*lwork < iws) {
|
||
|
|
||
|
/* Not enough workspace to use optimal NB: determine the */
|
||
|
/* minimum value of NB, and reduce NB or force use of */
|
||
|
/* unblocked code by setting NX = N. */
|
||
|
|
||
|
/* Computing MAX */
|
||
|
i__1 = *lwork / ldwork;
|
||
|
nb = max(i__1,1);
|
||
|
nbmin = ilaenv_(&c__2, "SSYTRD", uplo, n, &c_n1, &c_n1, &c_n1);
|
||
|
if (nb < nbmin) {
|
||
|
nx = *n;
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
nx = *n;
|
||
|
}
|
||
|
} else {
|
||
|
nb = 1;
|
||
|
}
|
||
|
|
||
|
if (upper) {
|
||
|
|
||
|
/* Reduce the upper triangle of A. */
|
||
|
/* Columns 1:kk are handled by the unblocked method. */
|
||
|
|
||
|
kk = *n - (*n - nx + nb - 1) / nb * nb;
|
||
|
i__1 = kk + 1;
|
||
|
i__2 = -nb;
|
||
|
for (i__ = *n - nb + 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ +=
|
||
|
i__2) {
|
||
|
|
||
|
/* Reduce columns i:i+nb-1 to tridiagonal form and form the */
|
||
|
/* matrix W which is needed to update the unreduced part of */
|
||
|
/* the matrix */
|
||
|
|
||
|
i__3 = i__ + nb - 1;
|
||
|
slatrd_(uplo, &i__3, &nb, &a[a_offset], lda, &e[1], &tau[1], &
|
||
|
work[1], &ldwork);
|
||
|
|
||
|
/* Update the unreduced submatrix A(1:i-1,1:i-1), using an */
|
||
|
/* update of the form: A := A - V*W' - W*V' */
|
||
|
|
||
|
i__3 = i__ - 1;
|
||
|
ssyr2k_(uplo, "No transpose", &i__3, &nb, &c_b22, &a[i__ * a_dim1
|
||
|
+ 1], lda, &work[1], &ldwork, &c_b23, &a[a_offset], lda);
|
||
|
|
||
|
/* Copy superdiagonal elements back into A, and diagonal */
|
||
|
/* elements into D */
|
||
|
|
||
|
i__3 = i__ + nb - 1;
|
||
|
for (j = i__; j <= i__3; ++j) {
|
||
|
a[j - 1 + j * a_dim1] = e[j - 1];
|
||
|
d__[j] = a[j + j * a_dim1];
|
||
|
/* L10: */
|
||
|
}
|
||
|
/* L20: */
|
||
|
}
|
||
|
|
||
|
/* Use unblocked code to reduce the last or only block */
|
||
|
|
||
|
ssytd2_(uplo, &kk, &a[a_offset], lda, &d__[1], &e[1], &tau[1], &iinfo);
|
||
|
} else {
|
||
|
|
||
|
/* Reduce the lower triangle of A */
|
||
|
|
||
|
i__2 = *n - nx;
|
||
|
i__1 = nb;
|
||
|
for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
|
||
|
|
||
|
/* Reduce columns i:i+nb-1 to tridiagonal form and form the */
|
||
|
/* matrix W which is needed to update the unreduced part of */
|
||
|
/* the matrix */
|
||
|
|
||
|
i__3 = *n - i__ + 1;
|
||
|
slatrd_(uplo, &i__3, &nb, &a[i__ + i__ * a_dim1], lda, &e[i__], &
|
||
|
tau[i__], &work[1], &ldwork);
|
||
|
|
||
|
/* Update the unreduced submatrix A(i+ib:n,i+ib:n), using */
|
||
|
/* an update of the form: A := A - V*W' - W*V' */
|
||
|
|
||
|
i__3 = *n - i__ - nb + 1;
|
||
|
ssyr2k_(uplo, "No transpose", &i__3, &nb, &c_b22, &a[i__ + nb +
|
||
|
i__ * a_dim1], lda, &work[nb + 1], &ldwork, &c_b23, &a[
|
||
|
i__ + nb + (i__ + nb) * a_dim1], lda);
|
||
|
|
||
|
/* Copy subdiagonal elements back into A, and diagonal */
|
||
|
/* elements into D */
|
||
|
|
||
|
i__3 = i__ + nb - 1;
|
||
|
for (j = i__; j <= i__3; ++j) {
|
||
|
a[j + 1 + j * a_dim1] = e[j];
|
||
|
d__[j] = a[j + j * a_dim1];
|
||
|
/* L30: */
|
||
|
}
|
||
|
/* L40: */
|
||
|
}
|
||
|
|
||
|
/* Use unblocked code to reduce the last or only block */
|
||
|
|
||
|
i__1 = *n - i__ + 1;
|
||
|
ssytd2_(uplo, &i__1, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[i__],
|
||
|
&tau[i__], &iinfo);
|
||
|
}
|
||
|
|
||
|
work[1] = (real) lwkopt;
|
||
|
return 0;
|
||
|
|
||
|
/* End of SSYTRD */
|
||
|
|
||
|
} /* ssytrd_ */
|