177 lines
4.9 KiB
C
177 lines
4.9 KiB
C
|
#include "clapack.h"
|
||
|
|
||
|
/* Subroutine */ int slasd5_(integer *i__, real *d__, real *z__, real *delta,
|
||
|
real *rho, real *dsigma, real *work)
|
||
|
{
|
||
|
/* System generated locals */
|
||
|
real r__1;
|
||
|
|
||
|
/* Builtin functions */
|
||
|
double sqrt(doublereal);
|
||
|
|
||
|
/* Local variables */
|
||
|
real b, c__, w, del, tau, delsq;
|
||
|
|
||
|
|
||
|
/* -- LAPACK auxiliary routine (version 3.1) -- */
|
||
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
||
|
/* November 2006 */
|
||
|
|
||
|
/* .. Scalar Arguments .. */
|
||
|
/* .. */
|
||
|
/* .. Array Arguments .. */
|
||
|
/* .. */
|
||
|
|
||
|
/* Purpose */
|
||
|
/* ======= */
|
||
|
|
||
|
/* This subroutine computes the square root of the I-th eigenvalue */
|
||
|
/* of a positive symmetric rank-one modification of a 2-by-2 diagonal */
|
||
|
/* matrix */
|
||
|
|
||
|
/* diag( D ) * diag( D ) + RHO * Z * transpose(Z) . */
|
||
|
|
||
|
/* The diagonal entries in the array D are assumed to satisfy */
|
||
|
|
||
|
/* 0 <= D(i) < D(j) for i < j . */
|
||
|
|
||
|
/* We also assume RHO > 0 and that the Euclidean norm of the vector */
|
||
|
/* Z is one. */
|
||
|
|
||
|
/* Arguments */
|
||
|
/* ========= */
|
||
|
|
||
|
/* I (input) INTEGER */
|
||
|
/* The index of the eigenvalue to be computed. I = 1 or I = 2. */
|
||
|
|
||
|
/* D (input) REAL array, dimension (2) */
|
||
|
/* The original eigenvalues. We assume 0 <= D(1) < D(2). */
|
||
|
|
||
|
/* Z (input) REAL array, dimension (2) */
|
||
|
/* The components of the updating vector. */
|
||
|
|
||
|
/* DELTA (output) REAL array, dimension (2) */
|
||
|
/* Contains (D(j) - sigma_I) in its j-th component. */
|
||
|
/* The vector DELTA contains the information necessary */
|
||
|
/* to construct the eigenvectors. */
|
||
|
|
||
|
/* RHO (input) REAL */
|
||
|
/* The scalar in the symmetric updating formula. */
|
||
|
|
||
|
/* DSIGMA (output) REAL */
|
||
|
/* The computed sigma_I, the I-th updated eigenvalue. */
|
||
|
|
||
|
/* WORK (workspace) REAL array, dimension (2) */
|
||
|
/* WORK contains (D(j) + sigma_I) in its j-th component. */
|
||
|
|
||
|
/* Further Details */
|
||
|
/* =============== */
|
||
|
|
||
|
/* Based on contributions by */
|
||
|
/* Ren-Cang Li, Computer Science Division, University of California */
|
||
|
/* at Berkeley, USA */
|
||
|
|
||
|
/* ===================================================================== */
|
||
|
|
||
|
/* .. Parameters .. */
|
||
|
/* .. */
|
||
|
/* .. Local Scalars .. */
|
||
|
/* .. */
|
||
|
/* .. Intrinsic Functions .. */
|
||
|
/* .. */
|
||
|
/* .. Executable Statements .. */
|
||
|
|
||
|
/* Parameter adjustments */
|
||
|
--work;
|
||
|
--delta;
|
||
|
--z__;
|
||
|
--d__;
|
||
|
|
||
|
/* Function Body */
|
||
|
del = d__[2] - d__[1];
|
||
|
delsq = del * (d__[2] + d__[1]);
|
||
|
if (*i__ == 1) {
|
||
|
w = *rho * 4.f * (z__[2] * z__[2] / (d__[1] + d__[2] * 3.f) - z__[1] *
|
||
|
z__[1] / (d__[1] * 3.f + d__[2])) / del + 1.f;
|
||
|
if (w > 0.f) {
|
||
|
b = delsq + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
|
||
|
c__ = *rho * z__[1] * z__[1] * delsq;
|
||
|
|
||
|
/* B > ZERO, always */
|
||
|
|
||
|
/* The following TAU is DSIGMA * DSIGMA - D( 1 ) * D( 1 ) */
|
||
|
|
||
|
tau = c__ * 2.f / (b + sqrt((r__1 = b * b - c__ * 4.f, dabs(r__1))
|
||
|
));
|
||
|
|
||
|
/* The following TAU is DSIGMA - D( 1 ) */
|
||
|
|
||
|
tau /= d__[1] + sqrt(d__[1] * d__[1] + tau);
|
||
|
*dsigma = d__[1] + tau;
|
||
|
delta[1] = -tau;
|
||
|
delta[2] = del - tau;
|
||
|
work[1] = d__[1] * 2.f + tau;
|
||
|
work[2] = d__[1] + tau + d__[2];
|
||
|
/* DELTA( 1 ) = -Z( 1 ) / TAU */
|
||
|
/* DELTA( 2 ) = Z( 2 ) / ( DEL-TAU ) */
|
||
|
} else {
|
||
|
b = -delsq + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
|
||
|
c__ = *rho * z__[2] * z__[2] * delsq;
|
||
|
|
||
|
/* The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 ) */
|
||
|
|
||
|
if (b > 0.f) {
|
||
|
tau = c__ * -2.f / (b + sqrt(b * b + c__ * 4.f));
|
||
|
} else {
|
||
|
tau = (b - sqrt(b * b + c__ * 4.f)) / 2.f;
|
||
|
}
|
||
|
|
||
|
/* The following TAU is DSIGMA - D( 2 ) */
|
||
|
|
||
|
tau /= d__[2] + sqrt((r__1 = d__[2] * d__[2] + tau, dabs(r__1)));
|
||
|
*dsigma = d__[2] + tau;
|
||
|
delta[1] = -(del + tau);
|
||
|
delta[2] = -tau;
|
||
|
work[1] = d__[1] + tau + d__[2];
|
||
|
work[2] = d__[2] * 2.f + tau;
|
||
|
/* DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU ) */
|
||
|
/* DELTA( 2 ) = -Z( 2 ) / TAU */
|
||
|
}
|
||
|
/* TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) ) */
|
||
|
/* DELTA( 1 ) = DELTA( 1 ) / TEMP */
|
||
|
/* DELTA( 2 ) = DELTA( 2 ) / TEMP */
|
||
|
} else {
|
||
|
|
||
|
/* Now I=2 */
|
||
|
|
||
|
b = -delsq + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
|
||
|
c__ = *rho * z__[2] * z__[2] * delsq;
|
||
|
|
||
|
/* The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 ) */
|
||
|
|
||
|
if (b > 0.f) {
|
||
|
tau = (b + sqrt(b * b + c__ * 4.f)) / 2.f;
|
||
|
} else {
|
||
|
tau = c__ * 2.f / (-b + sqrt(b * b + c__ * 4.f));
|
||
|
}
|
||
|
|
||
|
/* The following TAU is DSIGMA - D( 2 ) */
|
||
|
|
||
|
tau /= d__[2] + sqrt(d__[2] * d__[2] + tau);
|
||
|
*dsigma = d__[2] + tau;
|
||
|
delta[1] = -(del + tau);
|
||
|
delta[2] = -tau;
|
||
|
work[1] = d__[1] + tau + d__[2];
|
||
|
work[2] = d__[2] * 2.f + tau;
|
||
|
/* DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU ) */
|
||
|
/* DELTA( 2 ) = -Z( 2 ) / TAU */
|
||
|
/* TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) ) */
|
||
|
/* DELTA( 1 ) = DELTA( 1 ) / TEMP */
|
||
|
/* DELTA( 2 ) = DELTA( 2 ) / TEMP */
|
||
|
}
|
||
|
return 0;
|
||
|
|
||
|
/* End of SLASD5 */
|
||
|
|
||
|
} /* slasd5_ */
|