133 lines
3.4 KiB
C
Raw Normal View History

#include "clapack.h"
/* Subroutine */ int slas2_(real *f, real *g, real *h__, real *ssmin, real *
ssmax)
{
/* System generated locals */
real r__1, r__2;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
real c__, fa, ga, ha, as, at, au, fhmn, fhmx;
/* -- LAPACK auxiliary routine (version 3.1) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SLAS2 computes the singular values of the 2-by-2 matrix */
/* [ F G ] */
/* [ 0 H ]. */
/* On return, SSMIN is the smaller singular value and SSMAX is the */
/* larger singular value. */
/* Arguments */
/* ========= */
/* F (input) REAL */
/* The (1,1) element of the 2-by-2 matrix. */
/* G (input) REAL */
/* The (1,2) element of the 2-by-2 matrix. */
/* H (input) REAL */
/* The (2,2) element of the 2-by-2 matrix. */
/* SSMIN (output) REAL */
/* The smaller singular value. */
/* SSMAX (output) REAL */
/* The larger singular value. */
/* Further Details */
/* =============== */
/* Barring over/underflow, all output quantities are correct to within */
/* a few units in the last place (ulps), even in the absence of a guard */
/* digit in addition/subtraction. */
/* In IEEE arithmetic, the code works correctly if one matrix element is */
/* infinite. */
/* Overflow will not occur unless the largest singular value itself */
/* overflows, or is within a few ulps of overflow. (On machines with */
/* partial overflow, like the Cray, overflow may occur if the largest */
/* singular value is within a factor of 2 of overflow.) */
/* Underflow is harmless if underflow is gradual. Otherwise, results */
/* may correspond to a matrix modified by perturbations of size near */
/* the underflow threshold. */
/* ==================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
fa = dabs(*f);
ga = dabs(*g);
ha = dabs(*h__);
fhmn = dmin(fa,ha);
fhmx = dmax(fa,ha);
if (fhmn == 0.f) {
*ssmin = 0.f;
if (fhmx == 0.f) {
*ssmax = ga;
} else {
/* Computing 2nd power */
r__1 = dmin(fhmx,ga) / dmax(fhmx,ga);
*ssmax = dmax(fhmx,ga) * sqrt(r__1 * r__1 + 1.f);
}
} else {
if (ga < fhmx) {
as = fhmn / fhmx + 1.f;
at = (fhmx - fhmn) / fhmx;
/* Computing 2nd power */
r__1 = ga / fhmx;
au = r__1 * r__1;
c__ = 2.f / (sqrt(as * as + au) + sqrt(at * at + au));
*ssmin = fhmn * c__;
*ssmax = fhmx / c__;
} else {
au = fhmx / ga;
if (au == 0.f) {
/* Avoid possible harmful underflow if exponent range */
/* asymmetric (true SSMIN may not underflow even if */
/* AU underflows) */
*ssmin = fhmn * fhmx / ga;
*ssmax = ga;
} else {
as = fhmn / fhmx + 1.f;
at = (fhmx - fhmn) / fhmx;
/* Computing 2nd power */
r__1 = as * au;
/* Computing 2nd power */
r__2 = at * au;
c__ = 1.f / (sqrt(r__1 * r__1 + 1.f) + sqrt(r__2 * r__2 + 1.f)
);
*ssmin = fhmn * c__ * au;
*ssmin += *ssmin;
*ssmax = ga / (c__ + c__);
}
}
}
return 0;
/* End of SLAS2 */
} /* slas2_ */