opencv/3rdparty/flann/nn/simplex_downhill.h

187 lines
5.5 KiB
C
Raw Normal View History

/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef SIMPLEX_DOWNHILL_H
#define SIMPLEX_DOWNHILL_H
namespace flann
{
/**
Adds val to array vals (and point to array points) and keeping the arrays sorted by vals.
*/
template <typename T>
void addValue(int pos, float val, float* vals, T* point, T* points, int n)
{
vals[pos] = val;
for (int i=0;i<n;++i) {
points[pos*n+i] = point[i];
}
// bubble down
int j=pos;
while (j>0 && vals[j]<vals[j-1]) {
swap(vals[j],vals[j-1]);
for (int i=0;i<n;++i) {
swap(points[j*n+i],points[(j-1)*n+i]);
}
--j;
}
}
/**
Simplex downhill optimization function.
Preconditions: points is a 2D mattrix of size (n+1) x n
func is the cost function taking n an array of n params and returning float
vals is the cost function in the n+1 simplex points, if NULL it will be computed
Postcondition: returns optimum value and points[0..n] are the optimum parameters
*/
template <typename T, typename F>
float optimizeSimplexDownhill(T* points, int n, F func, float* vals = NULL )
{
const int MAX_ITERATIONS = 10;
assert(n>0);
T* p_o = new T[n];
T* p_r = new T[n];
T* p_e = new T[n];
int alpha = 1;
int iterations = 0;
bool ownVals = false;
if (vals == NULL) {
ownVals = true;
vals = new float[n+1];
for (int i=0;i<n+1;++i) {
float val = func(points+i*n);
addValue(i, val, vals, points+i*n, points, n);
}
}
int nn = n*n;
while (true) {
if (iterations++ > MAX_ITERATIONS) break;
// compute average of simplex points (except the highest point)
for (int j=0;j<n;++j) {
p_o[j] = 0;
for (int i=0;i<n;++i) {
p_o[i] += points[j*n+i];
}
}
for (int i=0;i<n;++i) {
p_o[i] /= n;
}
bool converged = true;
for (int i=0;i<n;++i) {
if (p_o[i] != points[nn+i]) {
converged = false;
}
}
if (converged) break;
// trying a reflection
for (int i=0;i<n;++i) {
p_r[i] = p_o[i] + alpha*(p_o[i]-points[nn+i]);
}
float val_r = func(p_r);
if (val_r>=vals[0] && val_r<vals[n]) {
// reflection between second highest and lowest
// add it to the simplex
logger.info("Choosing reflection\n");
addValue(n, val_r,vals, p_r, points, n);
continue;
}
if (val_r<vals[0]) {
// value is smaller than smalest in simplex
// expand some more to see if it drops further
for (int i=0;i<n;++i) {
p_e[i] = 2*p_r[i]-p_o[i];
}
float val_e = func(p_e);
if (val_e<val_r) {
logger.info("Choosing reflection and expansion\n");
addValue(n, val_e,vals,p_e,points,n);
}
else {
logger.info("Choosing reflection\n");
addValue(n, val_r,vals,p_r,points,n);
}
continue;
}
if (val_r>=vals[n]) {
for (int i=0;i<n;++i) {
p_e[i] = (p_o[i]+points[nn+i])/2;
}
float val_e = func(p_e);
if (val_e<vals[n]) {
logger.info("Choosing contraction\n");
addValue(n,val_e,vals,p_e,points,n);
continue;
}
}
{
logger.info("Full contraction\n");
for (int j=1;j<=n;++j) {
for (int i=0;i<n;++i) {
points[j*n+i] = (points[j*n+i]+points[i])/2;
}
float val = func(points+j*n);
addValue(j,val,vals,points+j*n,points,n);
}
}
}
float bestVal = vals[0];
delete[] p_r;
delete[] p_o;
delete[] p_e;
if (ownVals) delete[] vals;
return bestVal;
}
}
#endif //SIMPLEX_DOWNHILL_H