opencv/samples/cpp/tree_engine.cpp

92 lines
2.7 KiB
C++
Raw Normal View History

#include "opencv2/ml/ml.hpp"
#include "opencv2/core/core.hpp"
2013-03-28 21:01:12 +04:00
#include "opencv2/core/utility.hpp"
#include <stdio.h>
#include <string>
#include <map>
2010-12-03 02:49:09 +00:00
using namespace cv;
using namespace cv::ml;
2012-06-07 17:21:29 +00:00
static void help()
2010-12-03 02:49:09 +00:00
{
2012-06-07 17:21:29 +00:00
printf(
"\nThis sample demonstrates how to use different decision trees and forests including boosting and random trees.\n"
"Usage:\n\t./tree_engine [-r <response_column>] [-ts type_spec] <csv filename>\n"
"where -r <response_column> specified the 0-based index of the response (0 by default)\n"
"-ts specifies the var type spec in the form ord[n1,n2-n3,n4-n5,...]cat[m1-m2,m3,m4-m5,...]\n"
"<csv filename> is the name of training data file in comma-separated value format\n\n");
2010-12-03 02:49:09 +00:00
}
static void train_and_print_errs(Ptr<StatModel> model, const Ptr<TrainData>& data)
{
bool ok = model->train(data);
if( !ok )
{
printf("Training failed\n");
}
else
{
printf( "train error: %f\n", model->calcError(data, false, noArray()) );
printf( "test error: %f\n\n", model->calcError(data, true, noArray()) );
}
}
int main(int argc, char** argv)
{
if(argc < 2)
{
help();
return 0;
}
const char* filename = 0;
int response_idx = 0;
std::string typespec;
2012-06-07 17:21:29 +00:00
for(int i = 1; i < argc; i++)
{
if(strcmp(argv[i], "-r") == 0)
sscanf(argv[++i], "%d", &response_idx);
else if(strcmp(argv[i], "-ts") == 0)
typespec = argv[++i];
else if(argv[i][0] != '-' )
filename = argv[i];
else
{
printf("Error. Invalid option %s\n", argv[i]);
help();
return -1;
}
}
2012-06-07 17:21:29 +00:00
printf("\nReading in %s...\n\n",filename);
const double train_test_split_ratio = 0.5;
Ptr<TrainData> data = TrainData::loadFromCSV(filename, 0, response_idx, response_idx+1, typespec);
2012-06-07 17:21:29 +00:00
if( data.empty() )
{
printf("ERROR: File %s can not be read\n", filename);
return 0;
}
data->setTrainTestSplitRatio(train_test_split_ratio);
printf("======DTREE=====\n");
Ptr<DTrees> dtree = DTrees::create(DTrees::Params( 10, 2, 0, false, 16, 0, false, false, Mat() ));
train_and_print_errs(dtree, data);
if( (int)data->getClassLabels().total() <= 2 ) // regression or 2-class classification problem
{
printf("======BOOST=====\n");
Ptr<Boost> boost = Boost::create(Boost::Params(Boost::GENTLE, 100, 0.95, 2, false, Mat()));
train_and_print_errs(boost, data);
}
printf("======RTREES=====\n");
Ptr<RTrees> rtrees = RTrees::create(RTrees::Params(10, 2, 0, false, 16, Mat(), false, 0, TermCriteria(TermCriteria::MAX_ITER, 100, 0)));
train_and_print_errs(rtrees, data);
return 0;
}