opencv/3rdparty/lapack/sorm2l.c

218 lines
5.4 KiB
C
Raw Normal View History

#include "clapack.h"
/* Table of constant values */
static integer c__1 = 1;
/* Subroutine */ int sorm2l_(char *side, char *trans, integer *m, integer *n,
integer *k, real *a, integer *lda, real *tau, real *c__, integer *ldc,
real *work, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2;
/* Local variables */
integer i__, i1, i2, i3, mi, ni, nq;
real aii;
logical left;
extern logical lsame_(char *, char *);
extern /* Subroutine */ int slarf_(char *, integer *, integer *, real *,
integer *, real *, real *, integer *, real *), xerbla_(
char *, integer *);
logical notran;
/* -- LAPACK routine (version 3.1) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SORM2L overwrites the general real m by n matrix C with */
/* Q * C if SIDE = 'L' and TRANS = 'N', or */
/* Q'* C if SIDE = 'L' and TRANS = 'T', or */
/* C * Q if SIDE = 'R' and TRANS = 'N', or */
/* C * Q' if SIDE = 'R' and TRANS = 'T', */
/* where Q is a real orthogonal matrix defined as the product of k */
/* elementary reflectors */
/* Q = H(k) . . . H(2) H(1) */
/* as returned by SGEQLF. Q is of order m if SIDE = 'L' and of order n */
/* if SIDE = 'R'. */
/* Arguments */
/* ========= */
/* SIDE (input) CHARACTER*1 */
/* = 'L': apply Q or Q' from the Left */
/* = 'R': apply Q or Q' from the Right */
/* TRANS (input) CHARACTER*1 */
/* = 'N': apply Q (No transpose) */
/* = 'T': apply Q' (Transpose) */
/* M (input) INTEGER */
/* The number of rows of the matrix C. M >= 0. */
/* N (input) INTEGER */
/* The number of columns of the matrix C. N >= 0. */
/* K (input) INTEGER */
/* The number of elementary reflectors whose product defines */
/* the matrix Q. */
/* If SIDE = 'L', M >= K >= 0; */
/* if SIDE = 'R', N >= K >= 0. */
/* A (input) REAL array, dimension (LDA,K) */
/* The i-th column must contain the vector which defines the */
/* elementary reflector H(i), for i = 1,2,...,k, as returned by */
/* SGEQLF in the last k columns of its array argument A. */
/* A is modified by the routine but restored on exit. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. */
/* If SIDE = 'L', LDA >= max(1,M); */
/* if SIDE = 'R', LDA >= max(1,N). */
/* TAU (input) REAL array, dimension (K) */
/* TAU(i) must contain the scalar factor of the elementary */
/* reflector H(i), as returned by SGEQLF. */
/* C (input/output) REAL array, dimension (LDC,N) */
/* On entry, the m by n matrix C. */
/* On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q. */
/* LDC (input) INTEGER */
/* The leading dimension of the array C. LDC >= max(1,M). */
/* WORK (workspace) REAL array, dimension */
/* (N) if SIDE = 'L', */
/* (M) if SIDE = 'R' */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input arguments */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--tau;
c_dim1 = *ldc;
c_offset = 1 + c_dim1;
c__ -= c_offset;
--work;
/* Function Body */
*info = 0;
left = lsame_(side, "L");
notran = lsame_(trans, "N");
/* NQ is the order of Q */
if (left) {
nq = *m;
} else {
nq = *n;
}
if (! left && ! lsame_(side, "R")) {
*info = -1;
} else if (! notran && ! lsame_(trans, "T")) {
*info = -2;
} else if (*m < 0) {
*info = -3;
} else if (*n < 0) {
*info = -4;
} else if (*k < 0 || *k > nq) {
*info = -5;
} else if (*lda < max(1,nq)) {
*info = -7;
} else if (*ldc < max(1,*m)) {
*info = -10;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SORM2L", &i__1);
return 0;
}
/* Quick return if possible */
if (*m == 0 || *n == 0 || *k == 0) {
return 0;
}
if (left && notran || ! left && ! notran) {
i1 = 1;
i2 = *k;
i3 = 1;
} else {
i1 = *k;
i2 = 1;
i3 = -1;
}
if (left) {
ni = *n;
} else {
mi = *m;
}
i__1 = i2;
i__2 = i3;
for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
if (left) {
/* H(i) is applied to C(1:m-k+i,1:n) */
mi = *m - *k + i__;
} else {
/* H(i) is applied to C(1:m,1:n-k+i) */
ni = *n - *k + i__;
}
/* Apply H(i) */
aii = a[nq - *k + i__ + i__ * a_dim1];
a[nq - *k + i__ + i__ * a_dim1] = 1.f;
slarf_(side, &mi, &ni, &a[i__ * a_dim1 + 1], &c__1, &tau[i__], &c__[
c_offset], ldc, &work[1]);
a[nq - *k + i__ + i__ * a_dim1] = aii;
/* L10: */
}
return 0;
/* End of SORM2L */
} /* sorm2l_ */