163 lines
3.9 KiB
C
163 lines
3.9 KiB
C
|
#include "clapack.h"
|
||
|
|
||
|
/* Subroutine */ int sorgl2_(integer *m, integer *n, integer *k, real *a,
|
||
|
integer *lda, real *tau, real *work, integer *info)
|
||
|
{
|
||
|
/* System generated locals */
|
||
|
integer a_dim1, a_offset, i__1, i__2;
|
||
|
real r__1;
|
||
|
|
||
|
/* Local variables */
|
||
|
integer i__, j, l;
|
||
|
extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *),
|
||
|
slarf_(char *, integer *, integer *, real *, integer *, real *,
|
||
|
real *, integer *, real *), xerbla_(char *, integer *);
|
||
|
|
||
|
|
||
|
/* -- LAPACK routine (version 3.1) -- */
|
||
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
||
|
/* November 2006 */
|
||
|
|
||
|
/* .. Scalar Arguments .. */
|
||
|
/* .. */
|
||
|
/* .. Array Arguments .. */
|
||
|
/* .. */
|
||
|
|
||
|
/* Purpose */
|
||
|
/* ======= */
|
||
|
|
||
|
/* SORGL2 generates an m by n real matrix Q with orthonormal rows, */
|
||
|
/* which is defined as the first m rows of a product of k elementary */
|
||
|
/* reflectors of order n */
|
||
|
|
||
|
/* Q = H(k) . . . H(2) H(1) */
|
||
|
|
||
|
/* as returned by SGELQF. */
|
||
|
|
||
|
/* Arguments */
|
||
|
/* ========= */
|
||
|
|
||
|
/* M (input) INTEGER */
|
||
|
/* The number of rows of the matrix Q. M >= 0. */
|
||
|
|
||
|
/* N (input) INTEGER */
|
||
|
/* The number of columns of the matrix Q. N >= M. */
|
||
|
|
||
|
/* K (input) INTEGER */
|
||
|
/* The number of elementary reflectors whose product defines the */
|
||
|
/* matrix Q. M >= K >= 0. */
|
||
|
|
||
|
/* A (input/output) REAL array, dimension (LDA,N) */
|
||
|
/* On entry, the i-th row must contain the vector which defines */
|
||
|
/* the elementary reflector H(i), for i = 1,2,...,k, as returned */
|
||
|
/* by SGELQF in the first k rows of its array argument A. */
|
||
|
/* On exit, the m-by-n matrix Q. */
|
||
|
|
||
|
/* LDA (input) INTEGER */
|
||
|
/* The first dimension of the array A. LDA >= max(1,M). */
|
||
|
|
||
|
/* TAU (input) REAL array, dimension (K) */
|
||
|
/* TAU(i) must contain the scalar factor of the elementary */
|
||
|
/* reflector H(i), as returned by SGELQF. */
|
||
|
|
||
|
/* WORK (workspace) REAL array, dimension (M) */
|
||
|
|
||
|
/* INFO (output) INTEGER */
|
||
|
/* = 0: successful exit */
|
||
|
/* < 0: if INFO = -i, the i-th argument has an illegal value */
|
||
|
|
||
|
/* ===================================================================== */
|
||
|
|
||
|
/* .. Parameters .. */
|
||
|
/* .. */
|
||
|
/* .. Local Scalars .. */
|
||
|
/* .. */
|
||
|
/* .. External Subroutines .. */
|
||
|
/* .. */
|
||
|
/* .. Intrinsic Functions .. */
|
||
|
/* .. */
|
||
|
/* .. Executable Statements .. */
|
||
|
|
||
|
/* Test the input arguments */
|
||
|
|
||
|
/* Parameter adjustments */
|
||
|
a_dim1 = *lda;
|
||
|
a_offset = 1 + a_dim1;
|
||
|
a -= a_offset;
|
||
|
--tau;
|
||
|
--work;
|
||
|
|
||
|
/* Function Body */
|
||
|
*info = 0;
|
||
|
if (*m < 0) {
|
||
|
*info = -1;
|
||
|
} else if (*n < *m) {
|
||
|
*info = -2;
|
||
|
} else if (*k < 0 || *k > *m) {
|
||
|
*info = -3;
|
||
|
} else if (*lda < max(1,*m)) {
|
||
|
*info = -5;
|
||
|
}
|
||
|
if (*info != 0) {
|
||
|
i__1 = -(*info);
|
||
|
xerbla_("SORGL2", &i__1);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Quick return if possible */
|
||
|
|
||
|
if (*m <= 0) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (*k < *m) {
|
||
|
|
||
|
/* Initialise rows k+1:m to rows of the unit matrix */
|
||
|
|
||
|
i__1 = *n;
|
||
|
for (j = 1; j <= i__1; ++j) {
|
||
|
i__2 = *m;
|
||
|
for (l = *k + 1; l <= i__2; ++l) {
|
||
|
a[l + j * a_dim1] = 0.f;
|
||
|
/* L10: */
|
||
|
}
|
||
|
if (j > *k && j <= *m) {
|
||
|
a[j + j * a_dim1] = 1.f;
|
||
|
}
|
||
|
/* L20: */
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (i__ = *k; i__ >= 1; --i__) {
|
||
|
|
||
|
/* Apply H(i) to A(i:m,i:n) from the right */
|
||
|
|
||
|
if (i__ < *n) {
|
||
|
if (i__ < *m) {
|
||
|
a[i__ + i__ * a_dim1] = 1.f;
|
||
|
i__1 = *m - i__;
|
||
|
i__2 = *n - i__ + 1;
|
||
|
slarf_("Right", &i__1, &i__2, &a[i__ + i__ * a_dim1], lda, &
|
||
|
tau[i__], &a[i__ + 1 + i__ * a_dim1], lda, &work[1]);
|
||
|
}
|
||
|
i__1 = *n - i__;
|
||
|
r__1 = -tau[i__];
|
||
|
sscal_(&i__1, &r__1, &a[i__ + (i__ + 1) * a_dim1], lda);
|
||
|
}
|
||
|
a[i__ + i__ * a_dim1] = 1.f - tau[i__];
|
||
|
|
||
|
/* Set A(i,1:i-1) to zero */
|
||
|
|
||
|
i__1 = i__ - 1;
|
||
|
for (l = 1; l <= i__1; ++l) {
|
||
|
a[i__ + l * a_dim1] = 0.f;
|
||
|
/* L30: */
|
||
|
}
|
||
|
/* L40: */
|
||
|
}
|
||
|
return 0;
|
||
|
|
||
|
/* End of SORGL2 */
|
||
|
|
||
|
} /* sorgl2_ */
|