323 lines
9.7 KiB
C
323 lines
9.7 KiB
C
|
#include "clapack.h"
|
||
|
|
||
|
/* Subroutine */ int dsytrf_(char *uplo, integer *n, doublereal *a, integer *
|
||
|
lda, integer *ipiv, doublereal *work, integer *lwork, integer *info)
|
||
|
{
|
||
|
/* -- LAPACK routine (version 3.0) --
|
||
|
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
||
|
Courant Institute, Argonne National Lab, and Rice University
|
||
|
June 30, 1999
|
||
|
|
||
|
|
||
|
Purpose
|
||
|
=======
|
||
|
|
||
|
DSYTRF computes the factorization of a real symmetric matrix A using
|
||
|
the Bunch-Kaufman diagonal pivoting method. The form of the
|
||
|
factorization is
|
||
|
|
||
|
A = U*D*U**T or A = L*D*L**T
|
||
|
|
||
|
where U (or L) is a product of permutation and unit upper (lower)
|
||
|
triangular matrices, and D is symmetric and block diagonal with
|
||
|
1-by-1 and 2-by-2 diagonal blocks.
|
||
|
|
||
|
This is the blocked version of the algorithm, calling Level 3 BLAS.
|
||
|
|
||
|
Arguments
|
||
|
=========
|
||
|
|
||
|
UPLO (input) CHARACTER*1
|
||
|
= 'U': Upper triangle of A is stored;
|
||
|
= 'L': Lower triangle of A is stored.
|
||
|
|
||
|
N (input) INTEGER
|
||
|
The order of the matrix A. N >= 0.
|
||
|
|
||
|
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
|
||
|
On entry, the symmetric matrix A. If UPLO = 'U', the leading
|
||
|
N-by-N upper triangular part of A contains the upper
|
||
|
triangular part of the matrix A, and the strictly lower
|
||
|
triangular part of A is not referenced. If UPLO = 'L', the
|
||
|
leading N-by-N lower triangular part of A contains the lower
|
||
|
triangular part of the matrix A, and the strictly upper
|
||
|
triangular part of A is not referenced.
|
||
|
|
||
|
On exit, the block diagonal matrix D and the multipliers used
|
||
|
to obtain the factor U or L (see below for further details).
|
||
|
|
||
|
LDA (input) INTEGER
|
||
|
The leading dimension of the array A. LDA >= max(1,N).
|
||
|
|
||
|
IPIV (output) INTEGER array, dimension (N)
|
||
|
Details of the interchanges and the block structure of D.
|
||
|
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
|
||
|
interchanged and D(k,k) is a 1-by-1 diagonal block.
|
||
|
If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
|
||
|
columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
|
||
|
is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
|
||
|
IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
|
||
|
interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
|
||
|
|
||
|
WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
|
||
|
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
||
|
|
||
|
LWORK (input) INTEGER
|
||
|
The length of WORK. LWORK >=1. For best performance
|
||
|
LWORK >= N*NB, where NB is the block size returned by ILAENV.
|
||
|
|
||
|
If LWORK = -1, then a workspace query is assumed; the routine
|
||
|
only calculates the optimal size of the WORK array, returns
|
||
|
this value as the first entry of the WORK array, and no error
|
||
|
message related to LWORK is issued by XERBLA.
|
||
|
|
||
|
INFO (output) INTEGER
|
||
|
= 0: successful exit
|
||
|
< 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
> 0: if INFO = i, D(i,i) is exactly zero. The factorization
|
||
|
has been completed, but the block diagonal matrix D is
|
||
|
exactly singular, and division by zero will occur if it
|
||
|
is used to solve a system of equations.
|
||
|
|
||
|
Further Details
|
||
|
===============
|
||
|
|
||
|
If UPLO = 'U', then A = U*D*U', where
|
||
|
U = P(n)*U(n)* ... *P(k)U(k)* ...,
|
||
|
i.e., U is a product of terms P(k)*U(k), where k decreases from n to
|
||
|
1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
|
||
|
and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
|
||
|
defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
|
||
|
that if the diagonal block D(k) is of order s (s = 1 or 2), then
|
||
|
|
||
|
( I v 0 ) k-s
|
||
|
U(k) = ( 0 I 0 ) s
|
||
|
( 0 0 I ) n-k
|
||
|
k-s s n-k
|
||
|
|
||
|
If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
|
||
|
If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
|
||
|
and A(k,k), and v overwrites A(1:k-2,k-1:k).
|
||
|
|
||
|
If UPLO = 'L', then A = L*D*L', where
|
||
|
L = P(1)*L(1)* ... *P(k)*L(k)* ...,
|
||
|
i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
|
||
|
n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
|
||
|
and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
|
||
|
defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
|
||
|
that if the diagonal block D(k) is of order s (s = 1 or 2), then
|
||
|
|
||
|
( I 0 0 ) k-1
|
||
|
L(k) = ( 0 I 0 ) s
|
||
|
( 0 v I ) n-k-s+1
|
||
|
k-1 s n-k-s+1
|
||
|
|
||
|
If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
|
||
|
If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
|
||
|
and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
|
||
|
|
||
|
=====================================================================
|
||
|
|
||
|
|
||
|
Test the input parameters.
|
||
|
|
||
|
Parameter adjustments */
|
||
|
/* Table of constant values */
|
||
|
static integer c__1 = 1;
|
||
|
static integer c_n1 = -1;
|
||
|
static integer c__2 = 2;
|
||
|
|
||
|
/* System generated locals */
|
||
|
integer a_dim1, a_offset, i__1, i__2;
|
||
|
/* Local variables */
|
||
|
static integer j, k;
|
||
|
extern logical lsame_(char *, char *);
|
||
|
static integer nbmin, iinfo;
|
||
|
static logical upper;
|
||
|
extern /* Subroutine */ int dsytf2_(char *, integer *, doublereal *,
|
||
|
integer *, integer *, integer *);
|
||
|
static integer kb, nb;
|
||
|
extern /* Subroutine */ int xerbla_(char *, integer *);
|
||
|
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
|
||
|
integer *, integer *, ftnlen, ftnlen);
|
||
|
extern /* Subroutine */ int dlasyf_(char *, integer *, integer *, integer
|
||
|
*, doublereal *, integer *, integer *, doublereal *, integer *,
|
||
|
integer *);
|
||
|
static integer ldwork, lwkopt;
|
||
|
static logical lquery;
|
||
|
static integer iws;
|
||
|
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
|
||
|
|
||
|
|
||
|
a_dim1 = *lda;
|
||
|
a_offset = 1 + a_dim1 * 1;
|
||
|
a -= a_offset;
|
||
|
--ipiv;
|
||
|
--work;
|
||
|
|
||
|
/* Function Body */
|
||
|
*info = 0;
|
||
|
upper = lsame_(uplo, "U");
|
||
|
lquery = *lwork == -1;
|
||
|
if (! upper && ! lsame_(uplo, "L")) {
|
||
|
*info = -1;
|
||
|
} else if (*n < 0) {
|
||
|
*info = -2;
|
||
|
} else if (*lda < max(1,*n)) {
|
||
|
*info = -4;
|
||
|
} else if (*lwork < 1 && ! lquery) {
|
||
|
*info = -7;
|
||
|
}
|
||
|
|
||
|
if (*info == 0) {
|
||
|
|
||
|
/* Determine the block size */
|
||
|
|
||
|
nb = ilaenv_(&c__1, "DSYTRF", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6,
|
||
|
(ftnlen)1);
|
||
|
lwkopt = *n * nb;
|
||
|
work[1] = (doublereal) lwkopt;
|
||
|
}
|
||
|
|
||
|
if (*info != 0) {
|
||
|
i__1 = -(*info);
|
||
|
xerbla_("DSYTRF", &i__1);
|
||
|
return 0;
|
||
|
} else if (lquery) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
nbmin = 2;
|
||
|
ldwork = *n;
|
||
|
if (nb > 1 && nb < *n) {
|
||
|
iws = ldwork * nb;
|
||
|
if (*lwork < iws) {
|
||
|
/* Computing MAX */
|
||
|
i__1 = *lwork / ldwork;
|
||
|
nb = max(i__1,1);
|
||
|
/* Computing MAX */
|
||
|
i__1 = 2, i__2 = ilaenv_(&c__2, "DSYTRF", uplo, n, &c_n1, &c_n1, &
|
||
|
c_n1, (ftnlen)6, (ftnlen)1);
|
||
|
nbmin = max(i__1,i__2);
|
||
|
}
|
||
|
} else {
|
||
|
iws = 1;
|
||
|
}
|
||
|
if (nb < nbmin) {
|
||
|
nb = *n;
|
||
|
}
|
||
|
|
||
|
if (upper) {
|
||
|
|
||
|
/* Factorize A as U*D*U' using the upper triangle of A
|
||
|
|
||
|
K is the main loop index, decreasing from N to 1 in steps of
|
||
|
KB, where KB is the number of columns factorized by DLASYF;
|
||
|
KB is either NB or NB-1, or K for the last block */
|
||
|
|
||
|
k = *n;
|
||
|
L10:
|
||
|
|
||
|
/* If K < 1, exit from loop */
|
||
|
|
||
|
if (k < 1) {
|
||
|
goto L40;
|
||
|
}
|
||
|
|
||
|
if (k > nb) {
|
||
|
|
||
|
/* Factorize columns k-kb+1:k of A and use blocked code to
|
||
|
update columns 1:k-kb */
|
||
|
|
||
|
dlasyf_(uplo, &k, &nb, &kb, &a[a_offset], lda, &ipiv[1], &work[1],
|
||
|
&ldwork, &iinfo);
|
||
|
} else {
|
||
|
|
||
|
/* Use unblocked code to factorize columns 1:k of A */
|
||
|
|
||
|
dsytf2_(uplo, &k, &a[a_offset], lda, &ipiv[1], &iinfo);
|
||
|
kb = k;
|
||
|
}
|
||
|
|
||
|
/* Set INFO on the first occurrence of a zero pivot */
|
||
|
|
||
|
if (*info == 0 && iinfo > 0) {
|
||
|
*info = iinfo;
|
||
|
}
|
||
|
|
||
|
/* Decrease K and return to the start of the main loop */
|
||
|
|
||
|
k -= kb;
|
||
|
goto L10;
|
||
|
|
||
|
} else {
|
||
|
|
||
|
/* Factorize A as L*D*L' using the lower triangle of A
|
||
|
|
||
|
K is the main loop index, increasing from 1 to N in steps of
|
||
|
KB, where KB is the number of columns factorized by DLASYF;
|
||
|
KB is either NB or NB-1, or N-K+1 for the last block */
|
||
|
|
||
|
k = 1;
|
||
|
L20:
|
||
|
|
||
|
/* If K > N, exit from loop */
|
||
|
|
||
|
if (k > *n) {
|
||
|
goto L40;
|
||
|
}
|
||
|
|
||
|
if (k <= *n - nb) {
|
||
|
|
||
|
/* Factorize columns k:k+kb-1 of A and use blocked code to
|
||
|
update columns k+kb:n */
|
||
|
|
||
|
i__1 = *n - k + 1;
|
||
|
dlasyf_(uplo, &i__1, &nb, &kb, &a_ref(k, k), lda, &ipiv[k], &work[
|
||
|
1], &ldwork, &iinfo);
|
||
|
} else {
|
||
|
|
||
|
/* Use unblocked code to factorize columns k:n of A */
|
||
|
|
||
|
i__1 = *n - k + 1;
|
||
|
dsytf2_(uplo, &i__1, &a_ref(k, k), lda, &ipiv[k], &iinfo);
|
||
|
kb = *n - k + 1;
|
||
|
}
|
||
|
|
||
|
/* Set INFO on the first occurrence of a zero pivot */
|
||
|
|
||
|
if (*info == 0 && iinfo > 0) {
|
||
|
*info = iinfo + k - 1;
|
||
|
}
|
||
|
|
||
|
/* Adjust IPIV */
|
||
|
|
||
|
i__1 = k + kb - 1;
|
||
|
for (j = k; j <= i__1; ++j) {
|
||
|
if (ipiv[j] > 0) {
|
||
|
ipiv[j] = ipiv[j] + k - 1;
|
||
|
} else {
|
||
|
ipiv[j] = ipiv[j] - k + 1;
|
||
|
}
|
||
|
/* L30: */
|
||
|
}
|
||
|
|
||
|
/* Increase K and return to the start of the main loop */
|
||
|
|
||
|
k += kb;
|
||
|
goto L20;
|
||
|
|
||
|
}
|
||
|
|
||
|
L40:
|
||
|
work[1] = (doublereal) lwkopt;
|
||
|
return 0;
|
||
|
|
||
|
/* End of DSYTRF */
|
||
|
|
||
|
} /* dsytrf_ */
|
||
|
|
||
|
#undef a_ref
|
||
|
|
||
|
|