262 lines
6.1 KiB
C
262 lines
6.1 KiB
C
|
#include "clapack.h"
|
||
|
|
||
|
/* Table of constant values */
|
||
|
|
||
|
static doublereal c_b3 = 2.;
|
||
|
static doublereal c_b4 = 1.;
|
||
|
|
||
|
/* Subroutine */ int dlasv2_(doublereal *f, doublereal *g, doublereal *h__,
|
||
|
doublereal *ssmin, doublereal *ssmax, doublereal *snr, doublereal *
|
||
|
csr, doublereal *snl, doublereal *csl)
|
||
|
{
|
||
|
/* System generated locals */
|
||
|
doublereal d__1;
|
||
|
|
||
|
/* Builtin functions */
|
||
|
double sqrt(doublereal), d_sign(doublereal *, doublereal *);
|
||
|
|
||
|
/* Local variables */
|
||
|
doublereal a, d__, l, m, r__, s, t, fa, ga, ha, ft, gt, ht, mm, tt, clt,
|
||
|
crt, slt, srt;
|
||
|
integer pmax;
|
||
|
doublereal temp;
|
||
|
logical swap;
|
||
|
doublereal tsign;
|
||
|
extern doublereal dlamch_(char *);
|
||
|
logical gasmal;
|
||
|
|
||
|
|
||
|
/* -- LAPACK auxiliary routine (version 3.1) -- */
|
||
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
||
|
/* November 2006 */
|
||
|
|
||
|
/* .. Scalar Arguments .. */
|
||
|
/* .. */
|
||
|
|
||
|
/* Purpose */
|
||
|
/* ======= */
|
||
|
|
||
|
/* DLASV2 computes the singular value decomposition of a 2-by-2 */
|
||
|
/* triangular matrix */
|
||
|
/* [ F G ] */
|
||
|
/* [ 0 H ]. */
|
||
|
/* On return, abs(SSMAX) is the larger singular value, abs(SSMIN) is the */
|
||
|
/* smaller singular value, and (CSL,SNL) and (CSR,SNR) are the left and */
|
||
|
/* right singular vectors for abs(SSMAX), giving the decomposition */
|
||
|
|
||
|
/* [ CSL SNL ] [ F G ] [ CSR -SNR ] = [ SSMAX 0 ] */
|
||
|
/* [-SNL CSL ] [ 0 H ] [ SNR CSR ] [ 0 SSMIN ]. */
|
||
|
|
||
|
/* Arguments */
|
||
|
/* ========= */
|
||
|
|
||
|
/* F (input) DOUBLE PRECISION */
|
||
|
/* The (1,1) element of the 2-by-2 matrix. */
|
||
|
|
||
|
/* G (input) DOUBLE PRECISION */
|
||
|
/* The (1,2) element of the 2-by-2 matrix. */
|
||
|
|
||
|
/* H (input) DOUBLE PRECISION */
|
||
|
/* The (2,2) element of the 2-by-2 matrix. */
|
||
|
|
||
|
/* SSMIN (output) DOUBLE PRECISION */
|
||
|
/* abs(SSMIN) is the smaller singular value. */
|
||
|
|
||
|
/* SSMAX (output) DOUBLE PRECISION */
|
||
|
/* abs(SSMAX) is the larger singular value. */
|
||
|
|
||
|
/* SNL (output) DOUBLE PRECISION */
|
||
|
/* CSL (output) DOUBLE PRECISION */
|
||
|
/* The vector (CSL, SNL) is a unit left singular vector for the */
|
||
|
/* singular value abs(SSMAX). */
|
||
|
|
||
|
/* SNR (output) DOUBLE PRECISION */
|
||
|
/* CSR (output) DOUBLE PRECISION */
|
||
|
/* The vector (CSR, SNR) is a unit right singular vector for the */
|
||
|
/* singular value abs(SSMAX). */
|
||
|
|
||
|
/* Further Details */
|
||
|
/* =============== */
|
||
|
|
||
|
/* Any input parameter may be aliased with any output parameter. */
|
||
|
|
||
|
/* Barring over/underflow and assuming a guard digit in subtraction, all */
|
||
|
/* output quantities are correct to within a few units in the last */
|
||
|
/* place (ulps). */
|
||
|
|
||
|
/* In IEEE arithmetic, the code works correctly if one matrix element is */
|
||
|
/* infinite. */
|
||
|
|
||
|
/* Overflow will not occur unless the largest singular value itself */
|
||
|
/* overflows or is within a few ulps of overflow. (On machines with */
|
||
|
/* partial overflow, like the Cray, overflow may occur if the largest */
|
||
|
/* singular value is within a factor of 2 of overflow.) */
|
||
|
|
||
|
/* Underflow is harmless if underflow is gradual. Otherwise, results */
|
||
|
/* may correspond to a matrix modified by perturbations of size near */
|
||
|
/* the underflow threshold. */
|
||
|
|
||
|
/* ===================================================================== */
|
||
|
|
||
|
/* .. Parameters .. */
|
||
|
/* .. */
|
||
|
/* .. Local Scalars .. */
|
||
|
/* .. */
|
||
|
/* .. Intrinsic Functions .. */
|
||
|
/* .. */
|
||
|
/* .. External Functions .. */
|
||
|
/* .. */
|
||
|
/* .. Executable Statements .. */
|
||
|
|
||
|
ft = *f;
|
||
|
fa = abs(ft);
|
||
|
ht = *h__;
|
||
|
ha = abs(*h__);
|
||
|
|
||
|
/* PMAX points to the maximum absolute element of matrix */
|
||
|
/* PMAX = 1 if F largest in absolute values */
|
||
|
/* PMAX = 2 if G largest in absolute values */
|
||
|
/* PMAX = 3 if H largest in absolute values */
|
||
|
|
||
|
pmax = 1;
|
||
|
swap = ha > fa;
|
||
|
if (swap) {
|
||
|
pmax = 3;
|
||
|
temp = ft;
|
||
|
ft = ht;
|
||
|
ht = temp;
|
||
|
temp = fa;
|
||
|
fa = ha;
|
||
|
ha = temp;
|
||
|
|
||
|
/* Now FA .ge. HA */
|
||
|
|
||
|
}
|
||
|
gt = *g;
|
||
|
ga = abs(gt);
|
||
|
if (ga == 0.) {
|
||
|
|
||
|
/* Diagonal matrix */
|
||
|
|
||
|
*ssmin = ha;
|
||
|
*ssmax = fa;
|
||
|
clt = 1.;
|
||
|
crt = 1.;
|
||
|
slt = 0.;
|
||
|
srt = 0.;
|
||
|
} else {
|
||
|
gasmal = TRUE_;
|
||
|
if (ga > fa) {
|
||
|
pmax = 2;
|
||
|
if (fa / ga < dlamch_("EPS")) {
|
||
|
|
||
|
/* Case of very large GA */
|
||
|
|
||
|
gasmal = FALSE_;
|
||
|
*ssmax = ga;
|
||
|
if (ha > 1.) {
|
||
|
*ssmin = fa / (ga / ha);
|
||
|
} else {
|
||
|
*ssmin = fa / ga * ha;
|
||
|
}
|
||
|
clt = 1.;
|
||
|
slt = ht / gt;
|
||
|
srt = 1.;
|
||
|
crt = ft / gt;
|
||
|
}
|
||
|
}
|
||
|
if (gasmal) {
|
||
|
|
||
|
/* Normal case */
|
||
|
|
||
|
d__ = fa - ha;
|
||
|
if (d__ == fa) {
|
||
|
|
||
|
/* Copes with infinite F or H */
|
||
|
|
||
|
l = 1.;
|
||
|
} else {
|
||
|
l = d__ / fa;
|
||
|
}
|
||
|
|
||
|
/* Note that 0 .le. L .le. 1 */
|
||
|
|
||
|
m = gt / ft;
|
||
|
|
||
|
/* Note that abs(M) .le. 1/macheps */
|
||
|
|
||
|
t = 2. - l;
|
||
|
|
||
|
/* Note that T .ge. 1 */
|
||
|
|
||
|
mm = m * m;
|
||
|
tt = t * t;
|
||
|
s = sqrt(tt + mm);
|
||
|
|
||
|
/* Note that 1 .le. S .le. 1 + 1/macheps */
|
||
|
|
||
|
if (l == 0.) {
|
||
|
r__ = abs(m);
|
||
|
} else {
|
||
|
r__ = sqrt(l * l + mm);
|
||
|
}
|
||
|
|
||
|
/* Note that 0 .le. R .le. 1 + 1/macheps */
|
||
|
|
||
|
a = (s + r__) * .5;
|
||
|
|
||
|
/* Note that 1 .le. A .le. 1 + abs(M) */
|
||
|
|
||
|
*ssmin = ha / a;
|
||
|
*ssmax = fa * a;
|
||
|
if (mm == 0.) {
|
||
|
|
||
|
/* Note that M is very tiny */
|
||
|
|
||
|
if (l == 0.) {
|
||
|
t = d_sign(&c_b3, &ft) * d_sign(&c_b4, >);
|
||
|
} else {
|
||
|
t = gt / d_sign(&d__, &ft) + m / t;
|
||
|
}
|
||
|
} else {
|
||
|
t = (m / (s + t) + m / (r__ + l)) * (a + 1.);
|
||
|
}
|
||
|
l = sqrt(t * t + 4.);
|
||
|
crt = 2. / l;
|
||
|
srt = t / l;
|
||
|
clt = (crt + srt * m) / a;
|
||
|
slt = ht / ft * srt / a;
|
||
|
}
|
||
|
}
|
||
|
if (swap) {
|
||
|
*csl = srt;
|
||
|
*snl = crt;
|
||
|
*csr = slt;
|
||
|
*snr = clt;
|
||
|
} else {
|
||
|
*csl = clt;
|
||
|
*snl = slt;
|
||
|
*csr = crt;
|
||
|
*snr = srt;
|
||
|
}
|
||
|
|
||
|
/* Correct signs of SSMAX and SSMIN */
|
||
|
|
||
|
if (pmax == 1) {
|
||
|
tsign = d_sign(&c_b4, csr) * d_sign(&c_b4, csl) * d_sign(&c_b4, f);
|
||
|
}
|
||
|
if (pmax == 2) {
|
||
|
tsign = d_sign(&c_b4, snr) * d_sign(&c_b4, csl) * d_sign(&c_b4, g);
|
||
|
}
|
||
|
if (pmax == 3) {
|
||
|
tsign = d_sign(&c_b4, snr) * d_sign(&c_b4, snl) * d_sign(&c_b4, h__);
|
||
|
}
|
||
|
*ssmax = d_sign(ssmax, &tsign);
|
||
|
d__1 = tsign * d_sign(&c_b4, f) * d_sign(&c_b4, h__);
|
||
|
*ssmin = d_sign(ssmin, &d__1);
|
||
|
return 0;
|
||
|
|
||
|
/* End of DLASV2 */
|
||
|
|
||
|
} /* dlasv2_ */
|