opencv/modules/objdetect/src/lsvmtbbversion.cpp

124 lines
4.7 KiB
C++
Raw Normal View History

#include "precomp.hpp"
#ifdef HAVE_TBB
2011-02-08 07:34:25 +00:00
#include "_lsvm_tbbversion.h"
/*
// Task class
*/
class ScoreComputation : public tbb::task
{
private:
const CvLSVMFilterObject **filters;
const int n;
const CvLSVMFeaturePyramid *H;
const float b;
const int maxXBorder;
const int maxYBorder;
const float scoreThreshold;
const int kLevels;
const int *procLevels;
public:
float **score;
CvPoint ***points;
CvPoint ****partsDisplacement;
int *kPoints;
public:
ScoreComputation(const CvLSVMFilterObject **_filters, int _n,
const CvLSVMFeaturePyramid *_H,
float _b, int _maxXBorder, int _maxYBorder,
float _scoreThreshold, int _kLevels, const int *_procLevels,
float **_score, CvPoint ***_points, int *_kPoints,
CvPoint ****_partsDisplacement) :
n(_n), b(_b), maxXBorder(_maxXBorder),
maxYBorder(_maxYBorder), scoreThreshold(_scoreThreshold),
kLevels(_kLevels), score(_score), points(_points), kPoints(_kPoints),
partsDisplacement(_partsDisplacement)
{
filters = _filters;
H = _H;
procLevels = _procLevels;
};
task* execute()
{
int i, level, partsLevel, res;
for (i = 0; i < kLevels; i++)
{
level = procLevels[i];
partsLevel = level - LAMBDA;//H->lambda;
2011-02-08 07:34:25 +00:00
res = thresholdFunctionalScoreFixedLevel(
filters, n, H, level, b,
maxXBorder, maxYBorder, scoreThreshold, &(score[partsLevel]),
points[partsLevel], &(kPoints[partsLevel]),
partsDisplacement[partsLevel]);
if (res != LATENT_SVM_OK)
{
continue;
}
}
return NULL;
}
};
/*
// Computation score function using TBB tasks
//
// API
// int tbbTasksThresholdFunctionalScore(const CvLSVMFilterObject **filters, const int n,
const CvLSVMFeatureMap *H, const float b,
const int maxXBorder, const int maxYBorder,
const float scoreThreshold,
int *kLevels, int **procLevels,
const int threadsNum,
float **score, CvPoint ***points,
int *kPoints,
CvPoint ****partsDisplacement);
// INPUT
// filters - the set of filters (the first element is root filter,
the other - part filters)
// n - the number of part filters
// H - feature pyramid
// b - linear term of the score function
// maxXBorder - the largest root filter size (X-direction)
// maxYBorder - the largest root filter size (Y-direction)
// scoreThreshold - score threshold
// kLevels - array that contains number of levels processed
by each thread
// procLevels - array that contains lists of levels processed
by each thread
// threadsNum - the number of created threads
// OUTPUT
// score - score function values that exceed threshold
// points - the set of root filter positions (in the block space)
// kPoints - number of root filter positions
// partsDisplacement - displacement of part filters (in the block space)
// RESULT
//
*/
int tbbTasksThresholdFunctionalScore(const CvLSVMFilterObject **filters, const int n,
const CvLSVMFeaturePyramid *H, const float b,
const int maxXBorder, const int maxYBorder,
const float scoreThreshold,
int *kLevels, int **procLevels,
const int threadsNum,
float **score, CvPoint ***points,
int *kPoints,
CvPoint ****partsDisplacement)
{
tbb::task_list tasks;
int i;
for (i = 0; i < threadsNum; i++)
{
ScoreComputation& sc =
*new(tbb::task::allocate_root()) ScoreComputation(filters, n, H, b,
maxXBorder, maxYBorder, scoreThreshold, kLevels[i], procLevels[i],
score, points, kPoints, partsDisplacement);
tasks.push_back(sc);
}
tbb::task::spawn_root_and_wait(tasks);
return LATENT_SVM_OK;
};
#endif