opencv/modules/photo/test/test_npr.cpp

142 lines
5.3 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include "opencv2/photo.hpp"
#include <string>
using namespace cv;
using namespace std;
2014-10-14 12:07:15 +02:00
static const double numerical_precision = 100.;
TEST(Photo_NPR_EdgePreserveSmoothing_RecursiveFilter, regression)
{
string folder = string(cvtest::TS::ptr()->get_data_path()) + "npr/";
string original_path = folder + "test1.png";
Mat source = imread(original_path, IMREAD_COLOR);
ASSERT_FALSE(source.empty()) << "Could not load input image " << original_path;
Mat result;
edgePreservingFilter(source,result,1);
2014-09-26 04:42:05 +02:00
Mat reference = imread(folder + "smoothened_RF_reference.png");
2014-10-08 04:49:09 +02:00
double error = cvtest::norm(reference, result, NORM_L1);
2014-09-26 04:42:05 +02:00
EXPECT_LE(error, numerical_precision);
}
TEST(Photo_NPR_EdgePreserveSmoothing_NormConvFilter, regression)
{
string folder = string(cvtest::TS::ptr()->get_data_path()) + "npr/";
string original_path = folder + "test1.png";
Mat source = imread(original_path, IMREAD_COLOR);
ASSERT_FALSE(source.empty()) << "Could not load input image " << original_path;
Mat result;
edgePreservingFilter(source,result,2);
2014-09-26 04:42:05 +02:00
Mat reference = imread(folder + "smoothened_NCF_reference.png");
2014-10-08 04:49:09 +02:00
double error = cvtest::norm(reference, result, NORM_L1);
2014-09-26 04:42:05 +02:00
EXPECT_LE(error, numerical_precision);
}
TEST(Photo_NPR_DetailEnhance, regression)
{
string folder = string(cvtest::TS::ptr()->get_data_path()) + "npr/";
string original_path = folder + "test1.png";
Mat source = imread(original_path, IMREAD_COLOR);
ASSERT_FALSE(source.empty()) << "Could not load input image " << original_path;
Mat result;
detailEnhance(source,result);
2014-09-26 04:42:05 +02:00
Mat reference = imread(folder + "detail_enhanced_reference.png");
2014-10-08 04:49:09 +02:00
double error = cvtest::norm(reference, result, NORM_L1);
2014-09-26 04:42:05 +02:00
EXPECT_LE(error, numerical_precision);
}
TEST(Photo_NPR_PencilSketch, regression)
{
string folder = string(cvtest::TS::ptr()->get_data_path()) + "npr/";
string original_path = folder + "test1.png";
Mat source = imread(original_path, IMREAD_COLOR);
ASSERT_FALSE(source.empty()) << "Could not load input image " << original_path;
2014-09-26 04:42:05 +02:00
Mat pencil_result, color_pencil_result;
pencilSketch(source,pencil_result, color_pencil_result, 10, 0.1f, 0.03f);
2014-09-26 05:34:16 +02:00
Mat pencil_reference = imread(folder + "pencil_sketch_reference.png", 0 /* == grayscale*/);
2014-09-26 04:42:05 +02:00
double pencil_error = norm(pencil_reference, pencil_result, NORM_L1);
EXPECT_LE(pencil_error, numerical_precision);
2014-09-26 04:42:05 +02:00
Mat color_pencil_reference = imread(folder + "color_pencil_sketch_reference.png");
2014-10-08 04:49:09 +02:00
double color_pencil_error = cvtest::norm(color_pencil_reference, color_pencil_result, NORM_L1);
2014-09-26 04:42:05 +02:00
EXPECT_LE(color_pencil_error, numerical_precision);
}
TEST(Photo_NPR_Stylization, regression)
{
string folder = string(cvtest::TS::ptr()->get_data_path()) + "npr/";
string original_path = folder + "test1.png";
Mat source = imread(original_path, IMREAD_COLOR);
ASSERT_FALSE(source.empty()) << "Could not load input image " << original_path;
Mat result;
stylization(source,result);
2014-09-26 04:42:05 +02:00
Mat stylized_reference = imread(folder + "stylized_reference.png");
2014-10-08 04:49:09 +02:00
double stylized_error = cvtest::norm(stylized_reference, result, NORM_L1);
2014-09-26 04:42:05 +02:00
EXPECT_LE(stylized_error, numerical_precision);
}