opencv/samples/cpp/points_classifier.cpp

617 lines
18 KiB
C++
Raw Normal View History

2011-04-30 18:44:34 +02:00
#include "opencv2/core/core.hpp"
#include "opencv2/ml/ml.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <stdio.h>
using namespace std;
using namespace cv;
const Scalar WHITE_COLOR = CV_RGB(255,255,255);
const string winName = "points";
const int testStep = 5;
Mat img, imgDst;
2011-04-30 18:44:34 +02:00
RNG rng;
vector<Point> trainedPoints;
vector<int> trainedPointsMarkers;
vector<Scalar> classColors;
#define _NBC_ 0 // normal Bayessian classifier
#define _KNN_ 0 // k nearest neighbors classifier
#define _SVM_ 0 // support vectors machine
#define _DT_ 1 // decision tree
#define _BT_ 0 // ADA Boost
#define _GBT_ 0 // gradient boosted trees
#define _RF_ 0 // random forest
#define _ERT_ 0 // extremely randomized trees
#define _ANN_ 0 // artificial neural networks
#define _EM_ 0 // expectation-maximization
2011-04-30 18:44:34 +02:00
void on_mouse( int event, int x, int y, int /*flags*/, void* )
{
if( img.empty() )
return;
int updateFlag = 0;
if( event == CV_EVENT_LBUTTONUP )
{
if( classColors.empty() )
return;
trainedPoints.push_back( Point(x,y) );
trainedPointsMarkers.push_back( (int)(classColors.size()-1) );
2011-04-30 18:44:34 +02:00
updateFlag = true;
}
else if( event == CV_EVENT_RBUTTONUP )
{
#if _BT_
if( classColors.size() < 2 )
{
#endif
classColors.push_back( Scalar((uchar)rng(256), (uchar)rng(256), (uchar)rng(256)) );
updateFlag = true;
#if _BT_
}
else
cout << "New class can not be added, because CvBoost can only be used for 2-class classification" << endl;
#endif
2011-04-30 18:44:34 +02:00
}
//draw
if( updateFlag )
{
img = Scalar::all(0);
// put the text
stringstream text;
text << "current class " << classColors.size()-1;
putText( img, text.str(), Point(10,25), CV_FONT_HERSHEY_SIMPLEX, 0.8f, WHITE_COLOR, 2 );
text.str("");
text << "total classes " << classColors.size();
putText( img, text.str(), Point(10,50), CV_FONT_HERSHEY_SIMPLEX, 0.8f, WHITE_COLOR, 2 );
text.str("");
text << "total points " << trainedPoints.size();
putText(img, text.str(), cvPoint(10,75), CV_FONT_HERSHEY_SIMPLEX, 0.8f, WHITE_COLOR, 2 );
// draw points
for( size_t i = 0; i < trainedPoints.size(); i++ )
circle( img, trainedPoints[i], 5, classColors[trainedPointsMarkers[i]], -1 );
imshow( winName, img );
}
}
void prepare_train_data( Mat& samples, Mat& classes )
{
Mat( trainedPoints ).copyTo( samples );
Mat( trainedPointsMarkers ).copyTo( classes );
// reshape trainData and change its type
samples = samples.reshape( 1, samples.rows );
samples.convertTo( samples, CV_32FC1 );
}
#if _NBC_
void find_decision_boundary_NBC()
{
img.copyTo( imgDst );
Mat trainSamples, trainClasses;
prepare_train_data( trainSamples, trainClasses );
// learn classifier
CvNormalBayesClassifier normalBayesClassifier( trainSamples, trainClasses );
Mat testSample( 1, 2, CV_32FC1 );
for( int y = 0; y < img.rows; y += testStep )
{
for( int x = 0; x < img.cols; x += testStep )
{
testSample.at<float>(0) = (float)x;
testSample.at<float>(1) = (float)y;
int response = (int)normalBayesClassifier.predict( testSample );
circle( imgDst, Point(x,y), 1, classColors[response] );
}
}
}
#endif
#if _KNN_
2011-04-30 18:44:34 +02:00
void find_decision_boundary_KNN( int K )
{
img.copyTo( imgDst );
2011-04-30 18:44:34 +02:00
Mat trainSamples, trainClasses;
prepare_train_data( trainSamples, trainClasses );
// learn classifier
CvKNearest knnClassifier( trainSamples, trainClasses, Mat(), false, K );
Mat testSample( 1, 2, CV_32FC1 );
for( int y = 0; y < img.rows; y += testStep )
{
for( int x = 0; x < img.cols; x += testStep )
{
testSample.at<float>(0) = (float)x;
testSample.at<float>(1) = (float)y;
int response = (int)knnClassifier.find_nearest( testSample, K );
circle( imgDst, Point(x,y), 1, classColors[response] );
2011-04-30 18:44:34 +02:00
}
}
}
#endif
#if _SVM_
2011-04-30 18:44:34 +02:00
void find_decision_boundary_SVM( CvSVMParams params )
{
img.copyTo( imgDst );
2011-04-30 18:44:34 +02:00
Mat trainSamples, trainClasses;
prepare_train_data( trainSamples, trainClasses );
// learn classifier
CvSVM svmClassifier( trainSamples, trainClasses, Mat(), Mat(), params );
Mat testSample( 1, 2, CV_32FC1 );
for( int y = 0; y < img.rows; y += testStep )
{
for( int x = 0; x < img.cols; x += testStep )
{
testSample.at<float>(0) = (float)x;
testSample.at<float>(1) = (float)y;
int response = (int)svmClassifier.predict( testSample );
circle( imgDst, Point(x,y), 2, classColors[response], 1 );
2011-04-30 18:44:34 +02:00
}
}
for( int i = 0; i < svmClassifier.get_support_vector_count(); i++ )
{
const float* supportVector = svmClassifier.get_support_vector(i);
circle( imgDst, Point(supportVector[0],supportVector[1]), 5, CV_RGB(255,255,255), -1 );
2011-04-30 18:44:34 +02:00
}
}
#endif
#if _DT_
2011-04-30 18:44:34 +02:00
void find_decision_boundary_DT()
{
img.copyTo( imgDst );
2011-04-30 18:44:34 +02:00
Mat trainSamples, trainClasses;
prepare_train_data( trainSamples, trainClasses );
// learn classifier
CvDTree dtree;
Mat var_types( 1, trainSamples.cols + 1, CV_8UC1, Scalar(CV_VAR_ORDERED) );
var_types.at<uchar>( trainSamples.cols ) = CV_VAR_CATEGORICAL;
CvDTreeParams params;
params.max_depth = 8;
params.min_sample_count = 2;
params.use_surrogates = false;
params.cv_folds = 0; // the number of cross-validation folds
params.use_1se_rule = false;
params.truncate_pruned_tree = false;
dtree.train( trainSamples, CV_ROW_SAMPLE, trainClasses,
Mat(), Mat(), var_types, Mat(), params );
Mat testSample(1, 2, CV_32FC1 );
for( int y = 0; y < img.rows; y += testStep )
{
for( int x = 0; x < img.cols; x += testStep )
{
testSample.at<float>(0) = (float)x;
testSample.at<float>(1) = (float)y;
int response = (int)dtree.predict( testSample )->value;
circle( imgDst, Point(x,y), 2, classColors[response], 1 );
}
}
}
#endif
#if _BT_
void find_decision_boundary_BT()
{
img.copyTo( imgDst );
Mat trainSamples, trainClasses;
prepare_train_data( trainSamples, trainClasses );
// learn classifier
CvBoost boost;
Mat var_types( 1, trainSamples.cols + 1, CV_8UC1, Scalar(CV_VAR_ORDERED) );
var_types.at<uchar>( trainSamples.cols ) = CV_VAR_CATEGORICAL;
CvBoostParams params( CvBoost::DISCRETE, // boost_type
100, // weak_count
0.95, // weight_trim_rate
2, // max_depth
false, //use_surrogates
0 // priors
);
boost.train( trainSamples, CV_ROW_SAMPLE, trainClasses, Mat(), Mat(), var_types, Mat(), params );
Mat testSample(1, 2, CV_32FC1 );
for( int y = 0; y < img.rows; y += testStep )
{
for( int x = 0; x < img.cols; x += testStep )
{
testSample.at<float>(0) = (float)x;
testSample.at<float>(1) = (float)y;
int response = (int)boost.predict( testSample );
circle( imgDst, Point(x,y), 2, classColors[response], 1 );
}
}
}
#endif
#if _GBT_
void find_decision_boundary_GBT()
{
img.copyTo( imgDst );
Mat trainSamples, trainClasses;
prepare_train_data( trainSamples, trainClasses );
// learn classifier
CvGBTrees gbtrees;
Mat var_types( 1, trainSamples.cols + 1, CV_8UC1, Scalar(CV_VAR_ORDERED) );
var_types.at<uchar>( trainSamples.cols ) = CV_VAR_CATEGORICAL;
2011-05-04 16:49:02 +02:00
CvGBTreesParams params( CvGBTrees::DEVIANCE_LOSS, // loss_function_type
100, // weak_count
2011-05-04 16:49:02 +02:00
0.1f, // shrinkage
1.0f, // subsample_portion
2, // max_depth
2011-05-01 11:01:57 +02:00
false // use_surrogates )
2011-05-04 16:49:02 +02:00
);
gbtrees.train( trainSamples, CV_ROW_SAMPLE, trainClasses, Mat(), Mat(), var_types, Mat(), params );
Mat testSample(1, 2, CV_32FC1 );
for( int y = 0; y < img.rows; y += testStep )
{
for( int x = 0; x < img.cols; x += testStep )
{
testSample.at<float>(0) = (float)x;
testSample.at<float>(1) = (float)y;
int response = (int)gbtrees.predict( testSample );
circle( imgDst, Point(x,y), 2, classColors[response], 1 );
2011-04-30 18:44:34 +02:00
}
}
}
2011-04-30 18:44:34 +02:00
#endif
#if _RF_
2011-04-30 18:44:34 +02:00
void find_decision_boundary_RF()
{
img.copyTo( imgDst );
2011-04-30 18:44:34 +02:00
Mat trainSamples, trainClasses;
prepare_train_data( trainSamples, trainClasses );
// learn classifier
CvRTrees rtrees;
CvRTParams params( 4, // max_depth,
2, // min_sample_count,
0.f, // regression_accuracy,
false, // use_surrogates,
16, // max_categories,
0, // priors,
false, // calc_var_importance,
1, // nactive_vars,
5, // max_num_of_trees_in_the_forest,
0, // forest_accuracy,
CV_TERMCRIT_ITER // termcrit_type
);
2011-05-04 16:49:02 +02:00
rtrees.train( trainSamples, CV_ROW_SAMPLE, trainClasses, Mat(), Mat(), Mat(), Mat(), params );
2011-04-30 18:44:34 +02:00
Mat testSample(1, 2, CV_32FC1 );
for( int y = 0; y < img.rows; y += testStep )
{
for( int x = 0; x < img.cols; x += testStep )
{
testSample.at<float>(0) = (float)x;
testSample.at<float>(1) = (float)y;
int response = (int)rtrees.predict( testSample );
circle( imgDst, Point(x,y), 2, classColors[response], 1 );
2011-04-30 18:44:34 +02:00
}
}
}
#endif
#if _ERT_
void find_decision_boundary_ERT()
{
img.copyTo( imgDst );
Mat trainSamples, trainClasses;
prepare_train_data( trainSamples, trainClasses );
// learn classifier
CvERTrees ertrees;
Mat var_types( 1, trainSamples.cols + 1, CV_8UC1, Scalar(CV_VAR_ORDERED) );
var_types.at<uchar>( trainSamples.cols ) = CV_VAR_CATEGORICAL;
CvRTParams params( 4, // max_depth,
2, // min_sample_count,
0.f, // regression_accuracy,
false, // use_surrogates,
16, // max_categories,
0, // priors,
false, // calc_var_importance,
1, // nactive_vars,
5, // max_num_of_trees_in_the_forest,
0, // forest_accuracy,
CV_TERMCRIT_ITER // termcrit_type
);
ertrees.train( trainSamples, CV_ROW_SAMPLE, trainClasses, Mat(), Mat(), var_types, Mat(), params );
Mat testSample(1, 2, CV_32FC1 );
for( int y = 0; y < img.rows; y += testStep )
{
for( int x = 0; x < img.cols; x += testStep )
{
testSample.at<float>(0) = (float)x;
testSample.at<float>(1) = (float)y;
int response = (int)ertrees.predict( testSample );
circle( imgDst, Point(x,y), 2, classColors[response], 1 );
}
}
}
#endif
#if _ANN_
2011-04-30 18:44:34 +02:00
void find_decision_boundary_ANN( const Mat& layer_sizes )
{
img.copyTo( imgDst );
2011-04-30 18:44:34 +02:00
Mat trainSamples, trainClasses;
prepare_train_data( trainSamples, trainClasses );
// prerare trainClasses
trainClasses.create( trainedPoints.size(), classColors.size(), CV_32FC1 );
for( int i = 0; i < trainClasses.rows; i++ )
{
for( int k = 0; k < trainClasses.cols; k++ )
{
if( k == trainedPointsMarkers[i] )
trainClasses.at<float>(i,k) = 1;
else
trainClasses.at<float>(i,k) = 0;
}
}
Mat weights( 1, trainedPoints.size(), CV_32FC1, Scalar::all(1) );
// learn classifier
CvANN_MLP ann( layer_sizes, CvANN_MLP::SIGMOID_SYM, 1, 1 );
ann.train( trainSamples, trainClasses, weights );
Mat testSample( 1, 2, CV_32FC1 );
for( int y = 0; y < img.rows; y += testStep )
{
for( int x = 0; x < img.cols; x += testStep )
{
testSample.at<float>(0) = (float)x;
testSample.at<float>(1) = (float)y;
Mat outputs( 1, classColors.size(), CV_32FC1, testSample.data );
ann.predict( testSample, outputs );
Point maxLoc;
minMaxLoc( outputs, 0, 0, 0, &maxLoc );
circle( imgDst, Point(x,y), 2, classColors[maxLoc.x], 1 );
2011-04-30 18:44:34 +02:00
}
}
}
#endif
#if _EM_
void find_decision_boundary_EM()
2011-04-30 18:44:34 +02:00
{
img.copyTo( imgDst );
2011-04-30 18:44:34 +02:00
Mat trainSamples, trainClasses;
prepare_train_data( trainSamples, trainClasses );
vector<cv::EM> em_models(classColors.size());
2011-04-30 18:44:34 +02:00
CV_Assert((int)trainClasses.total() == trainSamples.rows);
CV_Assert((int)trainClasses.type() == CV_32SC1);
for(size_t modelIndex = 0; modelIndex < em_models.size(); modelIndex++)
{
const int componentCount = 3;
em_models[modelIndex] = EM(componentCount, cv::EM::COV_MAT_DIAGONAL);
Mat modelSamples;
for(int sampleIndex = 0; sampleIndex < trainSamples.rows; sampleIndex++)
{
if(trainClasses.at<int>(sampleIndex) == (int)modelIndex)
modelSamples.push_back(trainSamples.row(sampleIndex));
}
// learn models
if(!modelSamples.empty())
em_models[modelIndex].train(modelSamples);
}
2011-04-30 18:44:34 +02:00
// classify coordinate plane points using the bayes classifier, i.e.
// y(x) = arg max_i=1_modelsCount likelihoods_i(x)
2011-04-30 18:44:34 +02:00
Mat testSample(1, 2, CV_32FC1 );
for( int y = 0; y < img.rows; y += testStep )
{
for( int x = 0; x < img.cols; x += testStep )
{
testSample.at<float>(0) = (float)x;
testSample.at<float>(1) = (float)y;
Mat logLikelihoods(1, em_models.size(), CV_64FC1, Scalar(-DBL_MAX));
for(size_t modelIndex = 0; modelIndex < em_models.size(); modelIndex++)
{
if(em_models[modelIndex].isTrained())
logLikelihoods.at<double>(modelIndex) = em_models[modelIndex].predict(testSample)[0];
}
Point maxLoc;
minMaxLoc(logLikelihoods, 0, 0, 0, &maxLoc);
int response = maxLoc.x;
circle( imgDst, Point(x,y), 2, classColors[response], 1 );
2011-04-30 18:44:34 +02:00
}
}
}
#endif
int main()
{
cout << "Use:" << endl
<< " right mouse button - to add new class;" << endl
<< " left mouse button - to add new point;" << endl
<< " key 'r' - to run the ML model;" << endl
<< " key 'i' - to init (clear) the data." << endl << endl;
2011-04-30 18:44:34 +02:00
cv::namedWindow( "points", 1 );
img.create( 480, 640, CV_8UC3 );
imgDst.create( 480, 640, CV_8UC3 );
2011-04-30 18:44:34 +02:00
imshow( "points", img );
cvSetMouseCallback( "points", on_mouse );
for(;;)
{
uchar key = (uchar)waitKey();
2011-04-30 18:44:34 +02:00
if( key == 27 ) break;
if( key == 'i' ) // init
{
img = Scalar::all(0);
classColors.clear();
trainedPoints.clear();
trainedPointsMarkers.clear();
imshow( winName, img );
}
if( key == 'r' ) // run
{
#if _NBC_
find_decision_boundary_NBC();
cvNamedWindow( "NormalBayesClassifier", WINDOW_AUTOSIZE );
imshow( "NormalBayesClassifier", imgDst );
#endif
#if _KNN_
2011-04-30 18:44:34 +02:00
int K = 3;
find_decision_boundary_KNN( K );
namedWindow( "kNN", WINDOW_AUTOSIZE );
imshow( "kNN", imgDst );
2011-04-30 18:44:34 +02:00
K = 15;
find_decision_boundary_KNN( K );
namedWindow( "kNN2", WINDOW_AUTOSIZE );
imshow( "kNN2", imgDst );
2011-04-30 18:44:34 +02:00
#endif
#if _SVM_
2011-04-30 18:44:34 +02:00
//(1)-(2)separable and not sets
CvSVMParams params;
params.svm_type = CvSVM::C_SVC;
params.kernel_type = CvSVM::POLY; //CvSVM::LINEAR;
params.degree = 0.5;
params.gamma = 1;
params.coef0 = 1;
params.C = 1;
params.nu = 0.5;
params.p = 0;
params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, 1000, 0.01);
find_decision_boundary_SVM( params );
namedWindow( "classificationSVM1", WINDOW_AUTOSIZE );
imshow( "classificationSVM1", imgDst );
2011-04-30 18:44:34 +02:00
params.C = 10;
find_decision_boundary_SVM( params );
cvNamedWindow( "classificationSVM2", WINDOW_AUTOSIZE );
imshow( "classificationSVM2", imgDst );
2011-04-30 18:44:34 +02:00
#endif
#if _DT_
2011-04-30 18:44:34 +02:00
find_decision_boundary_DT();
2011-05-01 11:01:57 +02:00
namedWindow( "DT", WINDOW_AUTOSIZE );
imshow( "DT", imgDst );
#endif
#if _BT_
find_decision_boundary_BT();
2011-05-01 11:01:57 +02:00
namedWindow( "BT", WINDOW_AUTOSIZE );
imshow( "BT", imgDst);
#endif
#if _GBT_
find_decision_boundary_GBT();
2011-05-01 11:01:57 +02:00
namedWindow( "GBT", WINDOW_AUTOSIZE );
imshow( "GBT", imgDst);
2011-04-30 18:44:34 +02:00
#endif
#if _RF_
2011-04-30 18:44:34 +02:00
find_decision_boundary_RF();
2011-05-01 11:01:57 +02:00
namedWindow( "RF", WINDOW_AUTOSIZE );
imshow( "RF", imgDst);
#endif
#if _ERT_
find_decision_boundary_ERT();
2011-05-01 11:01:57 +02:00
namedWindow( "ERT", WINDOW_AUTOSIZE );
imshow( "ERT", imgDst);
2011-04-30 18:44:34 +02:00
#endif
#if _ANN_
2011-04-30 18:44:34 +02:00
Mat layer_sizes1( 1, 3, CV_32SC1 );
layer_sizes1.at<int>(0) = 2;
layer_sizes1.at<int>(1) = 5;
layer_sizes1.at<int>(2) = classColors.size();
find_decision_boundary_ANN( layer_sizes1 );
namedWindow( "ANN", WINDOW_AUTOSIZE );
imshow( "ANN", imgDst );
2011-04-30 18:44:34 +02:00
#endif
#if _EM_
find_decision_boundary_EM();
namedWindow( "EM", WINDOW_AUTOSIZE );
imshow( "EM", imgDst );
2011-04-30 18:44:34 +02:00
#endif
}
}
return 1;
}