opencv/apps/traincascade/traincascade.cpp

113 lines
3.7 KiB
C++
Raw Normal View History

2012-06-07 17:21:29 +00:00
#include "opencv2/core/core.hpp"
#include "opencv2/core/internal.hpp"
#include "cv.h"
#include "cascadeclassifier.h"
using namespace std;
int main( int argc, char* argv[] )
{
CvCascadeClassifier classifier;
String cascadeDirName, vecName, bgName;
int numPos = 2000;
int numNeg = 1000;
int numStages = 20;
int precalcValBufSize = 256,
precalcIdxBufSize = 256;
bool baseFormatSave = false;
2012-06-07 17:21:29 +00:00
CvCascadeParams cascadeParams;
CvCascadeBoostParams stageParams;
Ptr<CvFeatureParams> featureParams[] = { Ptr<CvFeatureParams>(new CvHaarFeatureParams),
2012-06-07 17:21:29 +00:00
Ptr<CvFeatureParams>(new CvLBPFeatureParams),
Ptr<CvFeatureParams>(new CvHOGFeatureParams)
};
int fc = sizeof(featureParams)/sizeof(featureParams[0]);
if( argc == 1 )
{
cout << "Usage: " << argv[0] << endl;
cout << " -data <cascade_dir_name>" << endl;
cout << " -vec <vec_file_name>" << endl;
cout << " -bg <background_file_name>" << endl;
cout << " [-numPos <number_of_positive_samples = " << numPos << ">]" << endl;
cout << " [-numNeg <number_of_negative_samples = " << numNeg << ">]" << endl;
cout << " [-numStages <number_of_stages = " << numStages << ">]" << endl;
cout << " [-precalcValBufSize <precalculated_vals_buffer_size_in_Mb = " << precalcValBufSize << ">]" << endl;
cout << " [-precalcIdxBufSize <precalculated_idxs_buffer_size_in_Mb = " << precalcIdxBufSize << ">]" << endl;
cout << " [-baseFormatSave]" << endl;
cascadeParams.printDefaults();
stageParams.printDefaults();
for( int fi = 0; fi < fc; fi++ )
featureParams[fi]->printDefaults();
return 0;
}
for( int i = 1; i < argc; i++ )
{
bool set = false;
if( !strcmp( argv[i], "-data" ) )
{
cascadeDirName = argv[++i];
}
else if( !strcmp( argv[i], "-vec" ) )
{
vecName = argv[++i];
}
else if( !strcmp( argv[i], "-bg" ) )
{
bgName = argv[++i];
}
else if( !strcmp( argv[i], "-numPos" ) )
{
numPos = atoi( argv[++i] );
}
else if( !strcmp( argv[i], "-numNeg" ) )
{
numNeg = atoi( argv[++i] );
}
else if( !strcmp( argv[i], "-numStages" ) )
{
numStages = atoi( argv[++i] );
}
else if( !strcmp( argv[i], "-precalcValBufSize" ) )
{
precalcValBufSize = atoi( argv[++i] );
}
else if( !strcmp( argv[i], "-precalcIdxBufSize" ) )
{
precalcIdxBufSize = atoi( argv[++i] );
}
else if( !strcmp( argv[i], "-baseFormatSave" ) )
{
baseFormatSave = true;
}
else if ( cascadeParams.scanAttr( argv[i], argv[i+1] ) ) { i++; }
else if ( stageParams.scanAttr( argv[i], argv[i+1] ) ) { i++; }
else if ( !set )
{
for( int fi = 0; fi < fc; fi++ )
{
2012-06-07 17:21:29 +00:00
set = featureParams[fi]->scanAttr(argv[i], argv[i+1]);
if ( !set )
{
i++;
break;
}
}
}
}
2012-06-07 17:21:29 +00:00
classifier.train( cascadeDirName,
vecName,
2012-06-07 17:21:29 +00:00
bgName,
numPos, numNeg,
precalcValBufSize, precalcIdxBufSize,
numStages,
cascadeParams,
*featureParams[cascadeParams.featureType],
stageParams,
baseFormatSave );
return 0;
}