opencv/apps/haartraining/cvhaarclassifier.cpp

836 lines
22 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/*
* cvhaarclassifier.cpp
*
* haar classifiers (stump, CART, stage, cascade)
*/
#include "_cvhaartraining.h"
CvIntHaarClassifier* icvCreateCARTHaarClassifier( int count )
{
CvCARTHaarClassifier* cart;
size_t datasize;
datasize = sizeof( *cart ) +
( sizeof( int ) +
sizeof( CvTHaarFeature ) + sizeof( CvFastHaarFeature ) +
sizeof( float ) + sizeof( int ) + sizeof( int ) ) * count +
sizeof( float ) * (count + 1);
cart = (CvCARTHaarClassifier*) cvAlloc( datasize );
memset( cart, 0, datasize );
cart->feature = (CvTHaarFeature*) (cart + 1);
cart->fastfeature = (CvFastHaarFeature*) (cart->feature + count);
cart->threshold = (float*) (cart->fastfeature + count);
cart->left = (int*) (cart->threshold + count);
cart->right = (int*) (cart->left + count);
cart->val = (float*) (cart->right + count);
cart->compidx = (int*) (cart->val + count + 1 );
cart->count = count;
cart->eval = icvEvalCARTHaarClassifier;
cart->save = icvSaveCARTHaarClassifier;
cart->release = icvReleaseHaarClassifier;
return (CvIntHaarClassifier*) cart;
}
void icvReleaseHaarClassifier( CvIntHaarClassifier** classifier )
{
cvFree( classifier );
*classifier = NULL;
}
void icvInitCARTHaarClassifier( CvCARTHaarClassifier* carthaar, CvCARTClassifier* cart,
CvIntHaarFeatures* intHaarFeatures )
{
int i;
for( i = 0; i < cart->count; i++ )
{
carthaar->feature[i] = intHaarFeatures->feature[cart->compidx[i]];
carthaar->fastfeature[i] = intHaarFeatures->fastfeature[cart->compidx[i]];
carthaar->threshold[i] = cart->threshold[i];
carthaar->left[i] = cart->left[i];
carthaar->right[i] = cart->right[i];
carthaar->val[i] = cart->val[i];
carthaar->compidx[i] = cart->compidx[i];
}
carthaar->count = cart->count;
carthaar->val[cart->count] = cart->val[cart->count];
}
float icvEvalCARTHaarClassifier( CvIntHaarClassifier* classifier,
sum_type* sum, sum_type* tilted, float normfactor )
{
int idx = 0;
do
{
if( cvEvalFastHaarFeature(
((CvCARTHaarClassifier*) classifier)->fastfeature + idx, sum, tilted )
< (((CvCARTHaarClassifier*) classifier)->threshold[idx] * normfactor) )
{
idx = ((CvCARTHaarClassifier*) classifier)->left[idx];
}
else
{
idx = ((CvCARTHaarClassifier*) classifier)->right[idx];
}
} while( idx > 0 );
return ((CvCARTHaarClassifier*) classifier)->val[-idx];
}
CvIntHaarClassifier* icvCreateStageHaarClassifier( int count, float threshold )
{
CvStageHaarClassifier* stage;
size_t datasize;
datasize = sizeof( *stage ) + sizeof( CvIntHaarClassifier* ) * count;
stage = (CvStageHaarClassifier*) cvAlloc( datasize );
memset( stage, 0, datasize );
stage->count = count;
stage->threshold = threshold;
stage->classifier = (CvIntHaarClassifier**) (stage + 1);
stage->eval = icvEvalStageHaarClassifier;
stage->save = icvSaveStageHaarClassifier;
stage->release = icvReleaseStageHaarClassifier;
return (CvIntHaarClassifier*) stage;
}
void icvReleaseStageHaarClassifier( CvIntHaarClassifier** classifier )
{
int i;
for( i = 0; i < ((CvStageHaarClassifier*) *classifier)->count; i++ )
{
if( ((CvStageHaarClassifier*) *classifier)->classifier[i] != NULL )
{
((CvStageHaarClassifier*) *classifier)->classifier[i]->release(
&(((CvStageHaarClassifier*) *classifier)->classifier[i]) );
}
}
cvFree( classifier );
*classifier = NULL;
}
float icvEvalStageHaarClassifier( CvIntHaarClassifier* classifier,
sum_type* sum, sum_type* tilted, float normfactor )
{
int i;
float stage_sum;
stage_sum = 0.0F;
for( i = 0; i < ((CvStageHaarClassifier*) classifier)->count; i++ )
{
stage_sum +=
((CvStageHaarClassifier*) classifier)->classifier[i]->eval(
((CvStageHaarClassifier*) classifier)->classifier[i],
sum, tilted, normfactor );
}
return stage_sum;
}
CvIntHaarClassifier* icvCreateCascadeHaarClassifier( int count )
{
CvCascadeHaarClassifier* ptr;
size_t datasize;
datasize = sizeof( *ptr ) + sizeof( CvIntHaarClassifier* ) * count;
ptr = (CvCascadeHaarClassifier*) cvAlloc( datasize );
memset( ptr, 0, datasize );
ptr->count = count;
ptr->classifier = (CvIntHaarClassifier**) (ptr + 1);
ptr->eval = icvEvalCascadeHaarClassifier;
ptr->save = NULL;
ptr->release = icvReleaseCascadeHaarClassifier;
return (CvIntHaarClassifier*) ptr;
}
void icvReleaseCascadeHaarClassifier( CvIntHaarClassifier** classifier )
{
int i;
for( i = 0; i < ((CvCascadeHaarClassifier*) *classifier)->count; i++ )
{
if( ((CvCascadeHaarClassifier*) *classifier)->classifier[i] != NULL )
{
((CvCascadeHaarClassifier*) *classifier)->classifier[i]->release(
&(((CvCascadeHaarClassifier*) *classifier)->classifier[i]) );
}
}
cvFree( classifier );
*classifier = NULL;
}
float icvEvalCascadeHaarClassifier( CvIntHaarClassifier* classifier,
sum_type* sum, sum_type* tilted, float normfactor )
{
int i;
for( i = 0; i < ((CvCascadeHaarClassifier*) classifier)->count; i++ )
{
if( ((CvCascadeHaarClassifier*) classifier)->classifier[i]->eval(
((CvCascadeHaarClassifier*) classifier)->classifier[i],
sum, tilted, normfactor )
< ( ((CvStageHaarClassifier*)
((CvCascadeHaarClassifier*) classifier)->classifier[i])->threshold
- CV_THRESHOLD_EPS) )
{
return 0.0;
}
}
return 1.0;
}
void icvSaveHaarFeature( CvTHaarFeature* feature, FILE* file )
{
fprintf( file, "%d\n", ( ( feature->rect[2].weight == 0.0F ) ? 2 : 3) );
fprintf( file, "%d %d %d %d %d %d\n",
feature->rect[0].r.x,
feature->rect[0].r.y,
feature->rect[0].r.width,
feature->rect[0].r.height,
0,
(int) (feature->rect[0].weight) );
fprintf( file, "%d %d %d %d %d %d\n",
feature->rect[1].r.x,
feature->rect[1].r.y,
feature->rect[1].r.width,
feature->rect[1].r.height,
0,
(int) (feature->rect[1].weight) );
if( feature->rect[2].weight != 0.0F )
{
fprintf( file, "%d %d %d %d %d %d\n",
feature->rect[2].r.x,
feature->rect[2].r.y,
feature->rect[2].r.width,
feature->rect[2].r.height,
0,
(int) (feature->rect[2].weight) );
}
fprintf( file, "%s\n", &(feature->desc[0]) );
}
void icvLoadHaarFeature( CvTHaarFeature* feature, FILE* file )
{
int nrect;
int j;
int tmp;
int weight;
nrect = 0;
int values_read = fscanf( file, "%d", &nrect );
CV_Assert(values_read == 1);
assert( nrect <= CV_HAAR_FEATURE_MAX );
for( j = 0; j < nrect; j++ )
{
values_read = fscanf( file, "%d %d %d %d %d %d",
&(feature->rect[j].r.x),
&(feature->rect[j].r.y),
&(feature->rect[j].r.width),
&(feature->rect[j].r.height),
&tmp, &weight );
CV_Assert(values_read == 6);
feature->rect[j].weight = (float) weight;
}
for( j = nrect; j < CV_HAAR_FEATURE_MAX; j++ )
{
feature->rect[j].r.x = 0;
feature->rect[j].r.y = 0;
feature->rect[j].r.width = 0;
feature->rect[j].r.height = 0;
feature->rect[j].weight = 0.0f;
}
values_read = fscanf( file, "%s", &(feature->desc[0]) );
CV_Assert(values_read == 1);
feature->tilted = ( feature->desc[0] == 't' );
}
void icvSaveCARTHaarClassifier( CvIntHaarClassifier* classifier, FILE* file )
{
int i;
int count;
count = ((CvCARTHaarClassifier*) classifier)->count;
fprintf( file, "%d\n", count );
for( i = 0; i < count; i++ )
{
icvSaveHaarFeature( &(((CvCARTHaarClassifier*) classifier)->feature[i]), file );
fprintf( file, "%e %d %d\n",
((CvCARTHaarClassifier*) classifier)->threshold[i],
((CvCARTHaarClassifier*) classifier)->left[i],
((CvCARTHaarClassifier*) classifier)->right[i] );
}
for( i = 0; i <= count; i++ )
{
fprintf( file, "%e ", ((CvCARTHaarClassifier*) classifier)->val[i] );
}
fprintf( file, "\n" );
}
CvIntHaarClassifier* icvLoadCARTHaarClassifier( FILE* file, int step )
{
CvCARTHaarClassifier* ptr;
int i;
int count;
ptr = NULL;
int values_read = fscanf( file, "%d", &count );
CV_Assert(values_read == 1);
if( count > 0 )
{
ptr = (CvCARTHaarClassifier*) icvCreateCARTHaarClassifier( count );
for( i = 0; i < count; i++ )
{
icvLoadHaarFeature( &(ptr->feature[i]), file );
values_read = fscanf( file, "%f %d %d", &(ptr->threshold[i]), &(ptr->left[i]),
&(ptr->right[i]) );
CV_Assert(values_read == 3);
}
for( i = 0; i <= count; i++ )
{
values_read = fscanf( file, "%f", &(ptr->val[i]) );
CV_Assert(values_read == 1);
}
icvConvertToFastHaarFeature( ptr->feature, ptr->fastfeature, ptr->count, step );
}
return (CvIntHaarClassifier*) ptr;
}
void icvSaveStageHaarClassifier( CvIntHaarClassifier* classifier, FILE* file )
{
int count;
int i;
float threshold;
count = ((CvStageHaarClassifier*) classifier)->count;
fprintf( file, "%d\n", count );
for( i = 0; i < count; i++ )
{
((CvStageHaarClassifier*) classifier)->classifier[i]->save(
((CvStageHaarClassifier*) classifier)->classifier[i], file );
}
threshold = ((CvStageHaarClassifier*) classifier)->threshold;
/* to be compatible with the previous implementation */
/* threshold = 2.0F * ((CvStageHaarClassifier*) classifier)->threshold - count; */
fprintf( file, "%e\n", threshold );
}
2012-06-07 19:21:29 +02:00
static CvIntHaarClassifier* icvLoadCARTStageHaarClassifierF( FILE* file, int step )
{
CvStageHaarClassifier* ptr = NULL;
//CV_FUNCNAME( "icvLoadCARTStageHaarClassifierF" );
__BEGIN__;
if( file != NULL )
{
int count;
int i;
float threshold;
count = 0;
int values_read = fscanf( file, "%d", &count );
CV_Assert(values_read == 1);
if( count > 0 )
{
ptr = (CvStageHaarClassifier*) icvCreateStageHaarClassifier( count, 0.0F );
for( i = 0; i < count; i++ )
{
ptr->classifier[i] = icvLoadCARTHaarClassifier( file, step );
}
values_read = fscanf( file, "%f", &threshold );
CV_Assert(values_read == 1);
ptr->threshold = threshold;
/* to be compatible with the previous implementation */
/* ptr->threshold = 0.5F * (threshold + count); */
}
if( feof( file ) )
{
ptr->release( (CvIntHaarClassifier**) &ptr );
ptr = NULL;
}
}
__END__;
return (CvIntHaarClassifier*) ptr;
}
CvIntHaarClassifier* icvLoadCARTStageHaarClassifier( const char* filename, int step )
{
CvIntHaarClassifier* ptr = NULL;
CV_FUNCNAME( "icvLoadCARTStageHaarClassifier" );
__BEGIN__;
FILE* file;
file = fopen( filename, "r" );
if( file )
{
CV_CALL( ptr = icvLoadCARTStageHaarClassifierF( file, step ) );
fclose( file );
}
__END__;
return ptr;
}
/* tree cascade classifier */
/* evaluates a tree cascade classifier */
float icvEvalTreeCascadeClassifier( CvIntHaarClassifier* classifier,
sum_type* sum, sum_type* tilted, float normfactor )
{
CvTreeCascadeNode* ptr;
ptr = ((CvTreeCascadeClassifier*) classifier)->root;
while( ptr )
{
if( ptr->stage->eval( (CvIntHaarClassifier*) ptr->stage,
sum, tilted, normfactor )
>= ptr->stage->threshold - CV_THRESHOLD_EPS )
{
ptr = ptr->child;
}
else
{
while( ptr && ptr->next == NULL ) ptr = ptr->parent;
if( ptr == NULL ) return 0.0F;
ptr = ptr->next;
}
}
return 1.0F;
}
/* sets path int the tree form the root to the leaf node */
void icvSetLeafNode( CvTreeCascadeClassifier* tcc, CvTreeCascadeNode* leaf )
{
CV_FUNCNAME( "icvSetLeafNode" );
__BEGIN__;
CvTreeCascadeNode* ptr;
ptr = NULL;
while( leaf )
{
leaf->child_eval = ptr;
ptr = leaf;
leaf = leaf->parent;
}
leaf = tcc->root;
while( leaf && leaf != ptr ) leaf = leaf->next;
if( leaf != ptr )
CV_ERROR( CV_StsError, "Invalid tcc or leaf node." );
tcc->root_eval = ptr;
__END__;
}
/* evaluates a tree cascade classifier. used in filtering */
float icvEvalTreeCascadeClassifierFilter( CvIntHaarClassifier* classifier, sum_type* sum,
sum_type* tilted, float normfactor )
{
CvTreeCascadeNode* ptr;
2012-06-08 05:15:08 +02:00
//CvTreeCascadeClassifier* tree;
2012-06-08 05:15:08 +02:00
//tree = (CvTreeCascadeClassifier*) classifier;
ptr = ((CvTreeCascadeClassifier*) classifier)->root_eval;
while( ptr )
{
if( ptr->stage->eval( (CvIntHaarClassifier*) ptr->stage,
sum, tilted, normfactor )
< ptr->stage->threshold - CV_THRESHOLD_EPS )
{
return 0.0F;
}
ptr = ptr->child_eval;
}
return 1.0F;
}
/* creates tree cascade node */
CvTreeCascadeNode* icvCreateTreeCascadeNode()
{
CvTreeCascadeNode* ptr = NULL;
CV_FUNCNAME( "icvCreateTreeCascadeNode" );
__BEGIN__;
size_t data_size;
data_size = sizeof( *ptr );
CV_CALL( ptr = (CvTreeCascadeNode*) cvAlloc( data_size ) );
memset( ptr, 0, data_size );
__END__;
return ptr;
}
/* releases all tree cascade nodes accessible via links */
void icvReleaseTreeCascadeNodes( CvTreeCascadeNode** node )
{
//CV_FUNCNAME( "icvReleaseTreeCascadeNodes" );
__BEGIN__;
if( node && *node )
{
CvTreeCascadeNode* ptr;
CvTreeCascadeNode* ptr_;
ptr = *node;
while( ptr )
{
while( ptr->child ) ptr = ptr->child;
if( ptr->stage ) ptr->stage->release( (CvIntHaarClassifier**) &ptr->stage );
ptr_ = ptr;
while( ptr && ptr->next == NULL ) ptr = ptr->parent;
if( ptr ) ptr = ptr->next;
cvFree( &ptr_ );
}
}
__END__;
}
/* releases tree cascade classifier */
void icvReleaseTreeCascadeClassifier( CvIntHaarClassifier** classifier )
{
if( classifier && *classifier )
{
icvReleaseTreeCascadeNodes( &((CvTreeCascadeClassifier*) *classifier)->root );
cvFree( classifier );
*classifier = NULL;
}
}
void icvPrintTreeCascade( CvTreeCascadeNode* root )
{
//CV_FUNCNAME( "icvPrintTreeCascade" );
__BEGIN__;
CvTreeCascadeNode* node;
CvTreeCascadeNode* n;
char buf0[256];
char buf[256];
int level;
int i;
int max_level;
node = root;
level = max_level = 0;
while( node )
{
while( node->child ) { node = node->child; level++; }
if( level > max_level ) { max_level = level; }
while( node && !node->next ) { node = node->parent; level--; }
if( node ) node = node->next;
}
printf( "\nTree Classifier\n" );
printf( "Stage\n" );
for( i = 0; i <= max_level; i++ ) printf( "+---" );
printf( "+\n" );
for( i = 0; i <= max_level; i++ ) printf( "|%3d", i );
printf( "|\n" );
for( i = 0; i <= max_level; i++ ) printf( "+---" );
printf( "+\n\n" );
node = root;
buf[0] = 0;
while( node )
{
sprintf( buf + strlen( buf ), "%3d", node->idx );
while( node->child )
{
node = node->child;
sprintf( buf + strlen( buf ),
((node->idx < 10) ? "---%d" : ((node->idx < 100) ? "--%d" : "-%d")),
node->idx );
}
printf( " %s\n", buf );
while( node && !node->next ) { node = node->parent; }
if( node )
{
node = node->next;
n = node->parent;
buf[0] = 0;
while( n )
{
if( n->next )
sprintf( buf0, " | %s", buf );
else
sprintf( buf0, " %s", buf );
strcpy( buf, buf0 );
n = n->parent;
}
printf( " %s |\n", buf );
}
}
printf( "\n" );
fflush( stdout );
__END__;
}
CvIntHaarClassifier* icvLoadTreeCascadeClassifier( const char* filename, int step,
int* splits )
{
CvTreeCascadeClassifier* ptr = NULL;
CvTreeCascadeNode** nodes = NULL;
CV_FUNCNAME( "icvLoadTreeCascadeClassifier" );
__BEGIN__;
size_t data_size;
CvStageHaarClassifier* stage;
char stage_name[PATH_MAX];
char* suffix;
int i, num;
FILE* f;
int result, parent=0, next=0;
int stub;
if( !splits ) splits = &stub;
*splits = 0;
data_size = sizeof( *ptr );
CV_CALL( ptr = (CvTreeCascadeClassifier*) cvAlloc( data_size ) );
memset( ptr, 0, data_size );
ptr->eval = icvEvalTreeCascadeClassifier;
ptr->release = icvReleaseTreeCascadeClassifier;
sprintf( stage_name, "%s/", filename );
suffix = stage_name + strlen( stage_name );
for( i = 0; ; i++ )
{
sprintf( suffix, "%d/%s", i, CV_STAGE_CART_FILE_NAME );
f = fopen( stage_name, "r" );
if( !f ) break;
fclose( f );
}
num = i;
if( num < 1 ) EXIT;
data_size = sizeof( *nodes ) * num;
CV_CALL( nodes = (CvTreeCascadeNode**) cvAlloc( data_size ) );
for( i = 0; i < num; i++ )
{
sprintf( suffix, "%d/%s", i, CV_STAGE_CART_FILE_NAME );
f = fopen( stage_name, "r" );
CV_CALL( stage = (CvStageHaarClassifier*)
icvLoadCARTStageHaarClassifierF( f, step ) );
result = ( f && stage ) ? fscanf( f, "%d%d", &parent, &next ) : 0;
if( f ) fclose( f );
if( result != 2 )
{
num = i;
break;
}
printf( "Stage %d loaded\n", i );
if( parent >= i || (next != -1 && next != i + 1) )
CV_ERROR( CV_StsError, "Invalid tree links" );
CV_CALL( nodes[i] = icvCreateTreeCascadeNode() );
nodes[i]->stage = stage;
nodes[i]->idx = i;
nodes[i]->parent = (parent != -1 ) ? nodes[parent] : NULL;
nodes[i]->next = ( next != -1 ) ? nodes[i] : NULL;
nodes[i]->child = NULL;
}
for( i = 0; i < num; i++ )
{
if( nodes[i]->next )
{
(*splits)++;
nodes[i]->next = nodes[i+1];
}
if( nodes[i]->parent && nodes[i]->parent->child == NULL )
{
nodes[i]->parent->child = nodes[i];
}
}
ptr->root = nodes[0];
ptr->next_idx = num;
__END__;
cvFree( &nodes );
return (CvIntHaarClassifier*) ptr;
}
CvTreeCascadeNode* icvFindDeepestLeaves( CvTreeCascadeClassifier* tcc )
{
CvTreeCascadeNode* leaves;
//CV_FUNCNAME( "icvFindDeepestLeaves" );
__BEGIN__;
int level, cur_level;
CvTreeCascadeNode* ptr;
CvTreeCascadeNode* last;
leaves = last = NULL;
ptr = tcc->root;
level = -1;
cur_level = 0;
/* find leaves with maximal level */
while( ptr )
{
if( ptr->child ) { ptr = ptr->child; cur_level++; }
else
{
if( cur_level == level )
{
last->next_same_level = ptr;
ptr->next_same_level = NULL;
last = ptr;
}
if( cur_level > level )
{
level = cur_level;
leaves = last = ptr;
ptr->next_same_level = NULL;
}
while( ptr && ptr->next == NULL ) { ptr = ptr->parent; cur_level--; }
if( ptr ) ptr = ptr->next;
}
}
__END__;
return leaves;
}
/* End of file. */