msgpack/include/msgpack/v2/unpack.hpp
2016-07-06 21:52:08 +09:00

1626 lines
54 KiB
C++

//
// MessagePack for C++ deserializing routine
//
// Copyright (C) 2016 KONDO Takatoshi
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef MSGPACK_V2_UNPACK_HPP
#define MSGPACK_V2_UNPACK_HPP
#include "msgpack/unpack_decl.hpp"
namespace msgpack {
/// @cond
MSGPACK_API_VERSION_NAMESPACE(v2) {
/// @endcond
struct null_visitor {
bool visit_nil() {
return true;
}
bool visit_boolean(bool /*v*/) {
return true;
}
bool visit_positive_integer(uint64_t /*v*/) {
return true;
}
bool visit_negative_integer(int64_t /*v*/) {
return true;
}
bool visit_float(double /*v*/) {
return true;
}
bool visit_str(const char* /*v*/, uint32_t /*size*/) {
return true;
}
bool visit_bin(const char* /*v*/, uint32_t /*size*/) {
return true;
}
bool visit_ext(const char* /*v*/, uint32_t /*size*/) {
return true;
}
bool start_array(uint32_t /*num_elements*/) {
return true;
}
bool start_array_item() {
return true;
}
bool end_array_item() {
return true;
}
bool end_array() {
return true;
}
bool start_map(uint32_t /*num_kv_pairs*/) {
return true;
}
bool start_map_key() {
return true;
}
bool end_map_key() {
return true;
}
bool start_map_value() {
return true;
}
bool end_map_value() {
return true;
}
bool end_map() {
return true;
}
void parse_error(size_t /*parsed_offset*/, size_t /*error_offset*/) {
}
void insufficient_bytes(size_t /*parsed_offset*/, size_t /*error_offset*/) {
}
};
namespace detail {
class create_object_visitor {
public:
create_object_visitor(unpack_reference_func f, void* user_data, unpack_limit const& limit)
:m_func(f), m_user_data(user_data), m_limit(limit) {
m_stack.reserve(MSGPACK_EMBED_STACK_SIZE);
m_stack.push_back(&m_obj);
}
#if !defined(MSGPACK_USE_CPP03)
create_object_visitor(create_object_visitor&& other)
:m_func(other.m_func),
m_user_data(other.m_user_data),
m_limit(std::move(other.m_limit)),
m_stack(std::move(other.m_stack)),
m_zone(other.m_zone),
m_referenced(other.m_referenced) {
other.m_zone = MSGPACK_NULLPTR;
m_stack[0] = &m_obj;
}
create_object_visitor& operator=(create_object_visitor&& other) {
this->~create_object_visitor();
new (this) create_object_visitor(std::move(other));
return *this;
}
#endif // !defined(MSGPACK_USE_CPP03)
void init() {
m_stack.resize(1);
m_obj = msgpack::object();
m_stack[0] = &m_obj;
}
msgpack::object const& data() const
{
return m_obj;
}
msgpack::zone const& zone() const { return *m_zone; }
msgpack::zone& zone() { return *m_zone; }
void set_zone(msgpack::zone& zone) { m_zone = &zone; }
bool referenced() const { return m_referenced; }
void set_referenced(bool referenced) { m_referenced = referenced; }
// visit functions
bool visit_nil() {
msgpack::object* obj = m_stack.back();
obj->type = msgpack::type::NIL;
return true;
}
bool visit_boolean(bool v) {
msgpack::object* obj = m_stack.back();
obj->type = msgpack::type::BOOLEAN;
obj->via.boolean = v;
return true;
}
bool visit_positive_integer(uint64_t v) {
msgpack::object* obj = m_stack.back();
obj->type = msgpack::type::POSITIVE_INTEGER;
obj->via.u64 = v;
return true;
}
bool visit_negative_integer(int64_t v) {
msgpack::object* obj = m_stack.back();
if(v >= 0) {
obj->type = msgpack::type::POSITIVE_INTEGER;
obj->via.u64 = v;
}
else {
obj->type = msgpack::type::NEGATIVE_INTEGER;
obj->via.i64 = v;
}
return true;
}
bool visit_float(double v) {
msgpack::object* obj = m_stack.back();
obj->type = msgpack::type::FLOAT;
obj->via.f64 = v;
return true;
}
bool visit_str(const char* v, uint32_t size) {
if (size > m_limit.str()) throw msgpack::str_size_overflow("str size overflow");
msgpack::object* obj = m_stack.back();
obj->type = msgpack::type::STR;
if (m_func && m_func(obj->type, size, m_user_data)) {
obj->via.str.ptr = v;
set_referenced(true);
}
else {
char* tmp = static_cast<char*>(zone().allocate_align(size));
std::memcpy(tmp, v, size);
obj->via.str.ptr = tmp;
}
obj->via.str.size = size;
return true;
}
bool visit_bin(const char* v, uint32_t size) {
if (size > m_limit.bin()) throw msgpack::bin_size_overflow("bin size overflow");
msgpack::object* obj = m_stack.back();
obj->type = msgpack::type::BIN;
if (m_func && m_func(obj->type, size, m_user_data)) {
obj->via.bin.ptr = v;
set_referenced(true);
}
else {
char* tmp = static_cast<char*>(zone().allocate_align(size));
std::memcpy(tmp, v, size);
obj->via.bin.ptr = tmp;
}
obj->via.bin.size = size;
return true;
}
bool visit_ext(const char* v, uint32_t size) {
if (size > m_limit.ext()) throw msgpack::ext_size_overflow("ext size overflow");
msgpack::object* obj = m_stack.back();
obj->type = msgpack::type::EXT;
if (m_func && m_func(obj->type, size, m_user_data)) {
obj->via.ext.ptr = v;
set_referenced(true);
}
else {
char* tmp = static_cast<char*>(zone().allocate_align(size));
std::memcpy(tmp, v, size);
obj->via.ext.ptr = tmp;
}
obj->via.ext.size = static_cast<uint32_t>(size - 1);
return true;
}
bool start_array(uint32_t num_elements) {
if (num_elements > m_limit.array()) throw msgpack::array_size_overflow("array size overflow");
if (m_stack.size() > m_limit.depth()) throw msgpack::depth_size_overflow("depth size overflow");
msgpack::object* obj = m_stack.back();
obj->type = msgpack::type::ARRAY;
obj->via.array.size = num_elements;
if (num_elements == 0) {
obj->via.array.ptr = MSGPACK_NULLPTR;
}
else {
obj->via.array.ptr =
static_cast<msgpack::object*>(m_zone->allocate_align(num_elements*sizeof(msgpack::object)));
}
m_stack.push_back(obj->via.array.ptr);
return true;
}
bool start_array_item() {
return true;
}
bool end_array_item() {
++m_stack.back();
return true;
}
bool end_array() {
m_stack.pop_back();
return true;
}
bool start_map(uint32_t num_kv_pairs) {
if (num_kv_pairs > m_limit.map()) throw msgpack::map_size_overflow("map size overflow");
if (m_stack.size() > m_limit.depth()) throw msgpack::depth_size_overflow("depth size overflow");
msgpack::object* obj = m_stack.back();
obj->type = msgpack::type::MAP;
obj->via.map.size = num_kv_pairs;
if (num_kv_pairs == 0) {
obj->via.map.ptr = MSGPACK_NULLPTR;
}
else {
obj->via.map.ptr =
static_cast<msgpack::object_kv*>(m_zone->allocate_align(num_kv_pairs*sizeof(msgpack::object_kv)));
}
m_stack.push_back(reinterpret_cast<msgpack::object*>(obj->via.map.ptr));
return true;
}
bool start_map_key() {
return true;
}
bool end_map_key() {
++m_stack.back();
return true;
}
bool start_map_value() {
return true;
}
bool end_map_value() {
++m_stack.back();
return true;
}
bool end_map() {
m_stack.pop_back();
return true;
}
void parse_error(size_t /*parsed_offset*/, size_t /*error_offset*/) {
throw msgpack::parse_error("parse error");
}
void insufficient_bytes(size_t /*parsed_offset*/, size_t /*error_offset*/) {
throw msgpack::insufficient_bytes("insufficient bytes");
}
private:
public:
unpack_reference_func m_func;
void* m_user_data;
unpack_limit m_limit;
msgpack::object m_obj;
std::vector<msgpack::object*> m_stack;
msgpack::zone* m_zone;
bool m_referenced;
};
template <typename VisitorHolder>
class context {
public:
context()
:m_trail(0), m_cs(MSGPACK_CS_HEADER)
{
}
void init()
{
m_cs = MSGPACK_CS_HEADER;
m_trail = 0;
m_stack.clear();
holder().visitor().init();
}
unpack_return execute(const char* data, std::size_t len, std::size_t& off);
private:
template <typename T>
static uint32_t next_cs(T p)
{
return static_cast<uint32_t>(*p) & 0x1f;
}
VisitorHolder& holder() {
return static_cast<VisitorHolder&>(*this);
}
template <typename T, typename StartVisitor, typename EndVisitor>
unpack_return start_aggregate(
StartVisitor const& sv,
EndVisitor const& ev,
const char* load_pos,
std::size_t& off) {
typename value<T>::type size;
load<T>(size, load_pos);
++m_current;
if (size == 0) {
if (!sv(size)) {
off = m_current - m_start;
return UNPACK_STOP_VISITOR;
}
if (!ev()) {
off = m_current - m_start;
return UNPACK_STOP_VISITOR;
}
unpack_return ret = m_stack.consume(holder());
if (ret != UNPACK_CONTINUE) {
off = m_current - m_start;
return ret;
}
}
else {
m_stack.push(sv.type(), static_cast<uint32_t>(size));
if (!sv(size)) {
off = m_current - m_start;
return UNPACK_STOP_VISITOR;
}
}
m_cs = MSGPACK_CS_HEADER;
return UNPACK_CONTINUE;
}
unpack_return after_visit_proc(bool visit_result, std::size_t& off) {
++m_current;
if (!visit_result) {
off = m_current - m_start;
return UNPACK_STOP_VISITOR;
}
unpack_return ret = m_stack.consume(holder());
if (ret == UNPACK_CONTINUE) {
m_cs = MSGPACK_CS_HEADER;
}
else {
off = m_current - m_start;
}
return ret;
}
struct array_sv {
array_sv(VisitorHolder& visitor_holder):m_visitor_holder(visitor_holder) {}
bool operator()(uint32_t size) const {
return m_visitor_holder.visitor().start_array(size);
}
msgpack_container_type type() const { return MSGPACK_CT_ARRAY_ITEM; }
private:
VisitorHolder& m_visitor_holder;
};
struct array_ev {
array_ev(VisitorHolder& visitor_holder):m_visitor_holder(visitor_holder) {}
bool operator()() const {
return m_visitor_holder.visitor().end_array();
}
private:
VisitorHolder& m_visitor_holder;
};
struct map_sv {
map_sv(VisitorHolder& visitor_holder):m_visitor_holder(visitor_holder) {}
bool operator()(uint32_t size) const {
return m_visitor_holder.visitor().start_map(size);
}
msgpack_container_type type() const { return MSGPACK_CT_MAP_KEY; }
private:
VisitorHolder& m_visitor_holder;
};
struct map_ev {
map_ev(VisitorHolder& visitor_holder):m_visitor_holder(visitor_holder) {}
bool operator()() const {
return m_visitor_holder.visitor().end_map();
}
private:
VisitorHolder& m_visitor_holder;
};
struct unpack_stack {
struct stack_elem {
stack_elem(msgpack_container_type type, uint32_t rest):m_type(type), m_rest(rest) {}
msgpack_container_type m_type;
uint32_t m_rest;
};
unpack_stack() {
m_stack.reserve(MSGPACK_EMBED_STACK_SIZE);
}
void push(msgpack_container_type type, uint32_t rest) {
m_stack.push_back(stack_elem(type, rest));
}
unpack_return consume(VisitorHolder& visitor_holder) {
while (!m_stack.empty()) {
stack_elem& e = m_stack.back();
switch (e.m_type) {
case MSGPACK_CT_ARRAY_ITEM:
if (!visitor_holder.visitor().end_array_item()) return UNPACK_STOP_VISITOR;
if (--e.m_rest == 0) {
m_stack.pop_back();
if (!visitor_holder.visitor().end_array()) return UNPACK_STOP_VISITOR;
}
else {
if (!visitor_holder.visitor().start_array_item()) return UNPACK_STOP_VISITOR;
return UNPACK_CONTINUE;
}
break;
case MSGPACK_CT_MAP_KEY:
if (!visitor_holder.visitor().end_map_key()) return UNPACK_STOP_VISITOR;
if (!visitor_holder.visitor().start_map_value()) return UNPACK_STOP_VISITOR;
e.m_type = MSGPACK_CT_MAP_VALUE;
return UNPACK_CONTINUE;
case MSGPACK_CT_MAP_VALUE:
if (!visitor_holder.visitor().end_map_value()) return UNPACK_STOP_VISITOR;
if (--e.m_rest == 0) {
m_stack.pop_back();
if (!visitor_holder.visitor().end_map()) return UNPACK_STOP_VISITOR;
}
else {
e.m_type = MSGPACK_CT_MAP_KEY;
if (!visitor_holder.visitor().start_map_key()) return UNPACK_STOP_VISITOR;
return UNPACK_CONTINUE;
}
break;
}
}
return UNPACK_SUCCESS;
}
bool empty() const { return m_stack.empty(); }
void clear() { m_stack.clear(); }
private:
std::vector<stack_elem> m_stack;
};
char const* m_start;
char const* m_current;
std::size_t m_trail;
uint32_t m_cs;
uint32_t m_num_elements;
unpack_stack m_stack;
};
template <std::size_t N>
inline void check_ext_size(std::size_t /*size*/) {
}
template <>
inline void check_ext_size<4>(std::size_t size) {
if (size == 0xffffffff) throw msgpack::ext_size_overflow("ext size overflow");
}
template <typename VisitorHolder>
inline unpack_return context<VisitorHolder>::execute(const char* data, std::size_t len, std::size_t& off)
{
assert(len >= off);
m_start = data;
m_current = data + off;
const char* const pe = data + len;
const char* n = MSGPACK_NULLPTR;
msgpack::object obj;
if(m_current == pe) {
off = m_current - m_start;
return UNPACK_CONTINUE;
}
bool fixed_trail_again = false;
do {
if (m_cs == MSGPACK_CS_HEADER) {
fixed_trail_again = false;
int selector = *reinterpret_cast<const unsigned char*>(m_current);
if (0x00 <= selector && selector <= 0x7f) { // Positive Fixnum
uint8_t tmp = *reinterpret_cast<const uint8_t*>(m_current);
bool visret = holder().visitor().visit_positive_integer(tmp);
unpack_return upr = after_visit_proc(visret, off);
if (upr != UNPACK_CONTINUE) return upr;
} else if(0xe0 <= selector && selector <= 0xff) { // Negative Fixnum
int8_t tmp = *reinterpret_cast<const int8_t*>(m_current);
bool visret = holder().visitor().visit_negative_integer(tmp);
unpack_return upr = after_visit_proc(visret, off);
if (upr != UNPACK_CONTINUE) return upr;
} else if (0xc4 <= selector && selector <= 0xdf) {
const uint32_t trail[] = {
1, // bin 8 0xc4
2, // bin 16 0xc5
4, // bin 32 0xc6
1, // ext 8 0xc7
2, // ext 16 0xc8
4, // ext 32 0xc9
4, // float 32 0xca
8, // float 64 0xcb
1, // uint 8 0xcc
2, // uint 16 0xcd
4, // uint 32 0xce
8, // uint 64 0xcf
1, // int 8 0xd0
2, // int 16 0xd1
4, // int 32 0xd2
8, // int 64 0xd3
2, // fixext 1 0xd4
3, // fixext 2 0xd5
5, // fixext 4 0xd6
9, // fixext 8 0xd7
17,// fixext 16 0xd8
1, // str 8 0xd9
2, // str 16 0xda
4, // str 32 0xdb
2, // array 16 0xdc
4, // array 32 0xdd
2, // map 16 0xde
4, // map 32 0xdf
};
m_trail = trail[selector - 0xc4];
m_cs = next_cs(m_current);
fixed_trail_again = true;
} else if(0xa0 <= selector && selector <= 0xbf) { // FixStr
m_trail = static_cast<uint32_t>(*m_current) & 0x1f;
if(m_trail == 0) {
bool visret = holder().visitor().visit_str(n, static_cast<uint32_t>(m_trail));
unpack_return upr = after_visit_proc(visret, off);
if (upr != UNPACK_CONTINUE) return upr;
}
else {
m_cs = MSGPACK_ACS_STR_VALUE;
fixed_trail_again = true;
}
} else if(0x90 <= selector && selector <= 0x9f) { // FixArray
unpack_return ret = start_aggregate<fix_tag>(array_sv(holder()), array_ev(holder()), m_current, off);
if (ret != UNPACK_CONTINUE) return ret;
if (!holder().visitor().start_array_item()) return UNPACK_STOP_VISITOR;
} else if(0x80 <= selector && selector <= 0x8f) { // FixMap
unpack_return ret = start_aggregate<fix_tag>(map_sv(holder()), map_ev(holder()), m_current, off);
if (ret != UNPACK_CONTINUE) return ret;
if (!holder().visitor().start_map_key()) return UNPACK_STOP_VISITOR;
} else if(selector == 0xc2) { // false
bool visret = holder().visitor().visit_boolean(false);
unpack_return upr = after_visit_proc(visret, off);
if (upr != UNPACK_CONTINUE) return upr;
} else if(selector == 0xc3) { // true
bool visret = holder().visitor().visit_boolean(true);
unpack_return upr = after_visit_proc(visret, off);
if (upr != UNPACK_CONTINUE) return upr;
} else if(selector == 0xc0) { // nil
bool visret = holder().visitor().visit_nil();
unpack_return upr = after_visit_proc(visret, off);
if (upr != UNPACK_CONTINUE) return upr;
} else {
off = m_current - m_start;
holder().visitor().parse_error(off - 1, off);
return UNPACK_PARSE_ERROR;
}
// end MSGPACK_CS_HEADER
}
if (m_cs != MSGPACK_CS_HEADER || fixed_trail_again) {
if (fixed_trail_again) {
++m_current;
fixed_trail_again = false;
}
if(static_cast<std::size_t>(pe - m_current) < m_trail) {
off = m_current - m_start;
return UNPACK_CONTINUE;
}
n = m_current;
m_current += m_trail - 1;
switch(m_cs) {
//case MSGPACK_CS_
//case MSGPACK_CS_
case MSGPACK_CS_FLOAT: {
union { uint32_t i; float f; } mem;
load<uint32_t>(mem.i, n);
bool visret = holder().visitor().visit_float(mem.f);
unpack_return upr = after_visit_proc(visret, off);
if (upr != UNPACK_CONTINUE) return upr;
} break;
case MSGPACK_CS_DOUBLE: {
union { uint64_t i; double f; } mem;
load<uint64_t>(mem.i, n);
#if defined(TARGET_OS_IPHONE)
// ok
#elif defined(__arm__) && !(__ARM_EABI__) // arm-oabi
// https://github.com/msgpack/msgpack-perl/pull/1
mem.i = (mem.i & 0xFFFFFFFFUL) << 32UL | (mem.i >> 32UL);
#endif
bool visret = holder().visitor().visit_float(mem.f);
unpack_return upr = after_visit_proc(visret, off);
if (upr != UNPACK_CONTINUE) return upr;
} break;
case MSGPACK_CS_UINT_8: {
uint8_t tmp;
load<uint8_t>(tmp, n);
bool visret = holder().visitor().visit_positive_integer(tmp);
unpack_return upr = after_visit_proc(visret, off);
if (upr != UNPACK_CONTINUE) return upr;
} break;
case MSGPACK_CS_UINT_16: {
uint16_t tmp;
load<uint16_t>(tmp, n);
bool visret = holder().visitor().visit_positive_integer(tmp);
unpack_return upr = after_visit_proc(visret, off);
if (upr != UNPACK_CONTINUE) return upr;
} break;
case MSGPACK_CS_UINT_32: {
uint32_t tmp;
load<uint32_t>(tmp, n);
bool visret = holder().visitor().visit_positive_integer(tmp);
unpack_return upr = after_visit_proc(visret, off);
if (upr != UNPACK_CONTINUE) return upr;
} break;
case MSGPACK_CS_UINT_64: {
uint64_t tmp;
load<uint64_t>(tmp, n);
bool visret = holder().visitor().visit_positive_integer(tmp);
unpack_return upr = after_visit_proc(visret, off);
if (upr != UNPACK_CONTINUE) return upr;
} break;
case MSGPACK_CS_INT_8: {
int8_t tmp;
load<int8_t>(tmp, n);
bool visret = holder().visitor().visit_negative_integer(tmp);
unpack_return upr = after_visit_proc(visret, off);
if (upr != UNPACK_CONTINUE) return upr;
} break;
case MSGPACK_CS_INT_16: {
int16_t tmp;
load<int16_t>(tmp, n);
bool visret = holder().visitor().visit_negative_integer(tmp);
unpack_return upr = after_visit_proc(visret, off);
if (upr != UNPACK_CONTINUE) return upr;
} break;
case MSGPACK_CS_INT_32: {
int32_t tmp;
load<int32_t>(tmp, n);
bool visret = holder().visitor().visit_negative_integer(tmp);
unpack_return upr = after_visit_proc(visret, off);
if (upr != UNPACK_CONTINUE) return upr;
} break;
case MSGPACK_CS_INT_64: {
int64_t tmp;
load<int64_t>(tmp, n);
bool visret = holder().visitor().visit_negative_integer(tmp);
unpack_return upr = after_visit_proc(visret, off);
if (upr != UNPACK_CONTINUE) return upr;
} break;
case MSGPACK_CS_FIXEXT_1: {
bool visret = holder().visitor().visit_ext(n, 1+1);
unpack_return upr = after_visit_proc(visret, off);
if (upr != UNPACK_CONTINUE) return upr;
} break;
case MSGPACK_CS_FIXEXT_2: {
bool visret = holder().visitor().visit_ext(n, 2+1);
unpack_return upr = after_visit_proc(visret, off);
if (upr != UNPACK_CONTINUE) return upr;
} break;
case MSGPACK_CS_FIXEXT_4: {
bool visret = holder().visitor().visit_ext(n, 4+1);
unpack_return upr = after_visit_proc(visret, off);
if (upr != UNPACK_CONTINUE) return upr;
} break;
case MSGPACK_CS_FIXEXT_8: {
bool visret = holder().visitor().visit_ext(n, 8+1);
unpack_return upr = after_visit_proc(visret, off);
if (upr != UNPACK_CONTINUE) return upr;
} break;
case MSGPACK_CS_FIXEXT_16: {
bool visret = holder().visitor().visit_ext(n, 16+1);
unpack_return upr = after_visit_proc(visret, off);
if (upr != UNPACK_CONTINUE) return upr;
} break;
case MSGPACK_CS_STR_8: {
uint8_t tmp;
load<uint8_t>(tmp, n);
m_trail = tmp;
if(m_trail == 0) {
bool visret = holder().visitor().visit_str(n, static_cast<uint32_t>(m_trail));
unpack_return upr = after_visit_proc(visret, off);
if (upr != UNPACK_CONTINUE) return upr;
}
else {
m_cs = MSGPACK_ACS_STR_VALUE;
fixed_trail_again = true;
}
} break;
case MSGPACK_CS_BIN_8: {
uint8_t tmp;
load<uint8_t>(tmp, n);
m_trail = tmp;
if(m_trail == 0) {
bool visret = holder().visitor().visit_bin(n, static_cast<uint32_t>(m_trail));
unpack_return upr = after_visit_proc(visret, off);
if (upr != UNPACK_CONTINUE) return upr;
}
else {
m_cs = MSGPACK_ACS_BIN_VALUE;
fixed_trail_again = true;
}
} break;
case MSGPACK_CS_EXT_8: {
uint8_t tmp;
load<uint8_t>(tmp, n);
m_trail = tmp + 1;
if(m_trail == 0) {
bool visret = holder().visitor().visit_ext(n, m_trail);
unpack_return upr = after_visit_proc(visret, off);
if (upr != UNPACK_CONTINUE) return upr;
}
else {
m_cs = MSGPACK_ACS_EXT_VALUE;
fixed_trail_again = true;
}
} break;
case MSGPACK_CS_STR_16: {
uint16_t tmp;
load<uint16_t>(tmp, n);
m_trail = tmp;
if(m_trail == 0) {
bool visret = holder().visitor().visit_str(n, static_cast<uint32_t>(m_trail));
unpack_return upr = after_visit_proc(visret, off);
if (upr != UNPACK_CONTINUE) return upr;
}
else {
m_cs = MSGPACK_ACS_STR_VALUE;
fixed_trail_again = true;
}
} break;
case MSGPACK_CS_BIN_16: {
uint16_t tmp;
load<uint16_t>(tmp, n);
m_trail = tmp;
if(m_trail == 0) {
bool visret = holder().visitor().visit_bin(n, static_cast<uint32_t>(m_trail));
unpack_return upr = after_visit_proc(visret, off);
if (upr != UNPACK_CONTINUE) return upr;
}
else {
m_cs = MSGPACK_ACS_BIN_VALUE;
fixed_trail_again = true;
}
} break;
case MSGPACK_CS_EXT_16: {
uint16_t tmp;
load<uint16_t>(tmp, n);
m_trail = tmp + 1;
if(m_trail == 0) {
bool visret = holder().visitor().visit_ext(n, m_trail);
unpack_return upr = after_visit_proc(visret, off);
if (upr != UNPACK_CONTINUE) return upr;
}
else {
m_cs = MSGPACK_ACS_EXT_VALUE;
fixed_trail_again = true;
}
} break;
case MSGPACK_CS_STR_32: {
uint32_t tmp;
load<uint32_t>(tmp, n);
m_trail = tmp;
if(m_trail == 0) {
bool visret = holder().visitor().visit_str(n, static_cast<uint32_t>(m_trail));
unpack_return upr = after_visit_proc(visret, off);
if (upr != UNPACK_CONTINUE) return upr;
}
else {
m_cs = MSGPACK_ACS_STR_VALUE;
fixed_trail_again = true;
}
} break;
case MSGPACK_CS_BIN_32: {
uint32_t tmp;
load<uint32_t>(tmp, n);
m_trail = tmp;
if(m_trail == 0) {
bool visret = holder().visitor().visit_bin(n, static_cast<uint32_t>(m_trail));
unpack_return upr = after_visit_proc(visret, off);
if (upr != UNPACK_CONTINUE) return upr;
}
else {
m_cs = MSGPACK_ACS_BIN_VALUE;
fixed_trail_again = true;
}
} break;
case MSGPACK_CS_EXT_32: {
uint32_t tmp;
load<uint32_t>(tmp, n);
check_ext_size<sizeof(std::size_t)>(tmp);
m_trail = tmp;
++m_trail;
if(m_trail == 0) {
bool visret = holder().visitor().visit_ext(n, m_trail);
unpack_return upr = after_visit_proc(visret, off);
if (upr != UNPACK_CONTINUE) return upr;
}
else {
m_cs = MSGPACK_ACS_EXT_VALUE;
fixed_trail_again = true;
}
} break;
case MSGPACK_ACS_STR_VALUE: {
bool visret = holder().visitor().visit_str(n, m_trail);
unpack_return upr = after_visit_proc(visret, off);
if (upr != UNPACK_CONTINUE) return upr;
} break;
case MSGPACK_ACS_BIN_VALUE: {
bool visret = holder().visitor().visit_bin(n, static_cast<uint32_t>(m_trail));
unpack_return upr = after_visit_proc(visret, off);
if (upr != UNPACK_CONTINUE) return upr;
} break;
case MSGPACK_ACS_EXT_VALUE: {
bool visret = holder().visitor().visit_ext(n, m_trail);
unpack_return upr = after_visit_proc(visret, off);
if (upr != UNPACK_CONTINUE) return upr;
} break;
case MSGPACK_CS_ARRAY_16: {
unpack_return ret = start_aggregate<uint16_t>(array_sv(holder()), array_ev(holder()), n, off);
if (ret != UNPACK_CONTINUE) return ret;
if (!holder().visitor().start_array_item()) return UNPACK_STOP_VISITOR;
} break;
case MSGPACK_CS_ARRAY_32: {
unpack_return ret = start_aggregate<uint32_t>(array_sv(holder()), array_ev(holder()), n, off);
if (ret != UNPACK_CONTINUE) return ret;
if (!holder().visitor().start_array_item()) return UNPACK_STOP_VISITOR;
} break;
case MSGPACK_CS_MAP_16: {
unpack_return ret = start_aggregate<uint16_t>(map_sv(holder()), map_ev(holder()), n, off);
if (ret != UNPACK_CONTINUE) return ret;
if (!holder().visitor().start_map_key()) return UNPACK_STOP_VISITOR;
} break;
case MSGPACK_CS_MAP_32: {
unpack_return ret = start_aggregate<uint32_t>(map_sv(holder()), map_ev(holder()), n, off);
if (ret != UNPACK_CONTINUE) return ret;
if (!holder().visitor().start_map_key()) return UNPACK_STOP_VISITOR;
} break;
default:
off = m_current - m_start;
holder().visitor().parse_error(n - m_start - 1, n - m_start);
return UNPACK_PARSE_ERROR;
}
}
} while(m_current != pe);
off = m_current - m_start;
return UNPACK_CONTINUE;
}
} // detail
/// Unpacking class for a stream deserialization.
template <typename VisitorHolder, typename ReferencedBufferHook>
class parser : public detail::context<VisitorHolder> {
typedef parser<VisitorHolder, ReferencedBufferHook> this_type;
typedef detail::context<VisitorHolder> context_type;
public:
/// Constructor
/**
* @param referenced If the unpacked object contains reference of the buffer, then set as true, otherwise false.
* @param f A judging function that msgpack::object refer to the buffer.
* @param user_data This parameter is passed to f.
* @param initial_buffer_size The memory size to allocate when unpacker is constructed.
* @param limit The size limit information of msgpack::object.
*
*/
parser(ReferencedBufferHook& hook,
std::size_t initial_buffer_size = MSGPACK_UNPACKER_INIT_BUFFER_SIZE);
#if !defined(MSGPACK_USE_CPP03)
parser(this_type&& other);
this_type& operator=(this_type&& other);
#endif // !defined(MSGPACK_USE_CPP03)
~parser();
public:
/// Reserve a buffer memory.
/**
* @param size The size of allocating memory.
*
* After returning this function, buffer_capacity() returns at least 'size'.
* See:
* https://github.com/msgpack/msgpack-c/wiki/v1_1_cpp_unpacker#msgpack-controls-a-buffer
*/
void reserve_buffer(std::size_t size = MSGPACK_UNPACKER_RESERVE_SIZE);
/// Get buffer pointer.
/**
* You need to care about the memory is enable between buffer() and buffer() + buffer_capacity()
* See:
* https://github.com/msgpack/msgpack-c/wiki/v1_1_cpp_unpacker#msgpack-controls-a-buffer
*/
char* buffer();
/// Get buffer capacity.
/**
* @return The memory size that you can write.
*
* See:
* https://github.com/msgpack/msgpack-c/wiki/v1_1_cpp_unpacker#msgpack-controls-a-buffer
*/
std::size_t buffer_capacity() const;
/// Notify a buffer consumed information to msgpack::unpacker.
/**
* @param size The size of memory that you consumed.
*
* After copying the data to the memory that is pointed by buffer(), you need to call the
* function to notify how many bytes are consumed. Then you can call next() functions.
*
* See:
* https://github.com/msgpack/msgpack-c/wiki/v1_1_cpp_unpacker#msgpack-controls-a-buffer
*/
void buffer_consumed(std::size_t size);
/// Unpack one msgpack::object.
/**
*
*
* @return If one msgpack::object is unpacked, then return true, if msgpack::object is incomplete
* and additional data is required, then return false. If data format is invalid, throw
* msgpack::parse_error.
*
* See:
* https://github.com/msgpack/msgpack-c/wiki/v1_1_cpp_unpacker#msgpack-controls-a-buffer
*/
bool next();
/// Get message size.
/**
* @return Returns parsed_size() + nonparsed_size()
*/
std::size_t message_size() const;
public:
/// Get parsed message size.
/**
* @return Parsed message size.
*
* This function is usable when non-MessagePack message follows after
* MessagePack message.
*/
std::size_t parsed_size() const;
/// Get the address that is not parsed in the buffer.
/**
* @return Address of the buffer that is not parsed
*
* This function is usable when non-MessagePack message follows after
* MessagePack message.
*/
char* nonparsed_buffer();
/// Get the size of the buffer that is not parsed.
/**
* @return Size of the buffer that is not parsed
*
* This function is usable when non-MessagePack message follows after
* MessagePack message.
*/
std::size_t nonparsed_size() const;
/// Skip the specified size of non-parsed buffer.
/**
* @param size to skip
*
* Note that the `size' argument must be smaller than nonparsed_size().
* This function is usable when non-MessagePack message follows after
* MessagePack message.
*/
void skip_nonparsed_buffer(std::size_t size);
/// Remove nonparsed buffer and reset the current position as a new start point.
/**
* This function is usable when non-MessagePack message follows after
* MessagePack message.
*/
void remove_nonparsed_buffer();
void reset();
protected:
char* get_raw_buffer() {
return m_buffer;
}
private:
void expand_buffer(std::size_t size);
unpack_return execute_imp();
private:
char* m_buffer;
std::size_t m_used;
std::size_t m_free;
std::size_t m_off;
std::size_t m_parsed;
std::size_t m_initial_buffer_size;
ReferencedBufferHook& m_referenced_buffer_hook;
#if defined(MSGPACK_USE_CPP03)
private:
parser(const this_type&);
this_type& operator=(const this_type&);
#else // defined(MSGPACK_USE_CPP03)
public:
parser(const this_type&) = delete;
this_type& operator=(const this_type&) = delete;
#endif // defined(MSGPACK_USE_CPP03)
};
template <typename VisitorHolder, typename ReferencedBufferHook>
inline parser<VisitorHolder, ReferencedBufferHook>::parser(
ReferencedBufferHook& hook,
std::size_t initial_buffer_size)
:m_referenced_buffer_hook(hook)
{
if(initial_buffer_size < COUNTER_SIZE) {
initial_buffer_size = COUNTER_SIZE;
}
char* buffer = static_cast<char*>(::malloc(initial_buffer_size));
if(!buffer) {
throw std::bad_alloc();
}
m_buffer = buffer;
m_used = COUNTER_SIZE;
m_free = initial_buffer_size - m_used;
m_off = COUNTER_SIZE;
m_parsed = 0;
m_initial_buffer_size = initial_buffer_size;
detail::init_count(m_buffer);
}
#if !defined(MSGPACK_USE_CPP03)
// Move constructor and move assignment operator
template <typename VisitorHolder, typename ReferencedBufferHook>
inline parser<VisitorHolder, ReferencedBufferHook>::parser(this_type&& other)
:context_type(std::move(other)),
m_buffer(other.m_buffer),
m_used(other.m_used),
m_free(other.m_free),
m_off(other.m_off),
m_parsed(other.m_parsed),
m_initial_buffer_size(other.m_initial_buffer_size),
m_referenced_buffer_hook(other.m_referenced_buffer_hook) {
other.m_buffer = MSGPACK_NULLPTR;
other.m_used = 0;
other.m_free = 0;
other.m_off = 0;
other.m_parsed = 0;
}
template <typename VisitorHolder, typename ReferencedBufferHook>
inline parser<VisitorHolder, ReferencedBufferHook>& parser<VisitorHolder, ReferencedBufferHook>::operator=(this_type&& other) {
this->~parser();
new (this) this_type(std::move(other));
return *this;
}
#endif // !defined(MSGPACK_USE_CPP03)
template <typename VisitorHolder, typename ReferencedBufferHook>
inline parser<VisitorHolder, ReferencedBufferHook>::~parser()
{
// These checks are required for move operations.
if (m_buffer) detail::decr_count(m_buffer);
}
template <typename VisitorHolder, typename ReferencedBufferHook>
inline void parser<VisitorHolder, ReferencedBufferHook>::reserve_buffer(std::size_t size)
{
if(m_free >= size) return;
expand_buffer(size);
}
template <typename VisitorHolder, typename ReferencedBufferHook>
inline void parser<VisitorHolder, ReferencedBufferHook>::expand_buffer(std::size_t size)
{
if(m_used == m_off && detail::get_count(m_buffer) == 1
&& static_cast<VisitorHolder&>(*this).visitor().referenced()) {
// rewind buffer
m_free += m_used - COUNTER_SIZE;
m_used = COUNTER_SIZE;
m_off = COUNTER_SIZE;
if(m_free >= size) return;
}
if(m_off == COUNTER_SIZE) {
std::size_t next_size = (m_used + m_free) * 2; // include COUNTER_SIZE
while(next_size < size + m_used) {
std::size_t tmp_next_size = next_size * 2;
if (tmp_next_size <= next_size) {
next_size = size + m_used;
break;
}
next_size = tmp_next_size;
}
char* tmp = static_cast<char*>(::realloc(m_buffer, next_size));
if(!tmp) {
throw std::bad_alloc();
}
m_buffer = tmp;
m_free = next_size - m_used;
} else {
std::size_t next_size = m_initial_buffer_size; // include COUNTER_SIZE
std::size_t not_parsed = m_used - m_off;
while(next_size < size + not_parsed + COUNTER_SIZE) {
std::size_t tmp_next_size = next_size * 2;
if (tmp_next_size <= next_size) {
next_size = size + not_parsed + COUNTER_SIZE;
break;
}
next_size = tmp_next_size;
}
char* tmp = static_cast<char*>(::malloc(next_size));
if(!tmp) {
throw std::bad_alloc();
}
detail::init_count(tmp);
std::memcpy(tmp+COUNTER_SIZE, m_buffer + m_off, not_parsed);
if(static_cast<VisitorHolder&>(*this).referenced()) {
try {
m_referenced_buffer_hook(m_buffer);
}
catch (...) {
::free(tmp);
throw;
}
static_cast<VisitorHolder&>(*this).set_referenced(false);
} else {
detail::decr_count(m_buffer);
}
m_buffer = tmp;
m_used = not_parsed + COUNTER_SIZE;
m_free = next_size - m_used;
m_off = COUNTER_SIZE;
}
}
template <typename VisitorHolder, typename ReferencedBufferHook>
inline char* parser<VisitorHolder, ReferencedBufferHook>::buffer()
{
return m_buffer + m_used;
}
template <typename VisitorHolder, typename ReferencedBufferHook>
inline std::size_t parser<VisitorHolder, ReferencedBufferHook>::buffer_capacity() const
{
return m_free;
}
template <typename VisitorHolder, typename ReferencedBufferHook>
inline void parser<VisitorHolder, ReferencedBufferHook>::buffer_consumed(std::size_t size)
{
m_used += size;
m_free -= size;
}
template <typename VisitorHolder, typename ReferencedBufferHook>
inline bool parser<VisitorHolder, ReferencedBufferHook>::next()
{
unpack_return ret = execute_imp();
return ret == UNPACK_SUCCESS;
}
template <typename VisitorHolder, typename ReferencedBufferHook>
inline unpack_return parser<VisitorHolder, ReferencedBufferHook>::execute_imp()
{
std::size_t off = m_off;
unpack_return ret = context_type::execute(m_buffer, m_used, m_off);
if(m_off > off) {
m_parsed += m_off - off;
}
return ret;
}
template <typename VisitorHolder, typename ReferencedBufferHook>
inline void parser<VisitorHolder, ReferencedBufferHook>::reset()
{
context_type::init();
// don't reset referenced flag
m_parsed = 0;
}
template <typename VisitorHolder, typename ReferencedBufferHook>
inline std::size_t parser<VisitorHolder, ReferencedBufferHook>::message_size() const
{
return m_parsed - m_off + m_used;
}
template <typename VisitorHolder, typename ReferencedBufferHook>
inline std::size_t parser<VisitorHolder, ReferencedBufferHook>::parsed_size() const
{
return m_parsed;
}
template <typename VisitorHolder, typename ReferencedBufferHook>
inline char* parser<VisitorHolder, ReferencedBufferHook>::nonparsed_buffer()
{
return m_buffer + m_off;
}
template <typename VisitorHolder, typename ReferencedBufferHook>
inline std::size_t parser<VisitorHolder, ReferencedBufferHook>::nonparsed_size() const
{
return m_used - m_off;
}
template <typename VisitorHolder, typename ReferencedBufferHook>
inline void parser<VisitorHolder, ReferencedBufferHook>::skip_nonparsed_buffer(std::size_t size)
{
m_off += size;
}
template <typename VisitorHolder, typename ReferencedBufferHook>
inline void parser<VisitorHolder, ReferencedBufferHook>::remove_nonparsed_buffer()
{
m_used = m_off;
}
struct zone_push_finalizer {
zone_push_finalizer(msgpack::zone& z):m_z(&z) {}
void set_zone(msgpack::zone& z) { m_z = &z; }
void operator()(char* buffer) {
m_z->push_finalizer(&detail::decr_count, buffer);
}
msgpack::zone* m_z;
};
class unpacker : public parser<unpacker, zone_push_finalizer>,
public detail::create_object_visitor {
typedef parser<unpacker, zone_push_finalizer> parser_t;
public:
unpacker(unpack_reference_func f = &unpacker::default_reference_func,
void* user_data = MSGPACK_NULLPTR,
std::size_t initial_buffer_size = MSGPACK_UNPACKER_INIT_BUFFER_SIZE,
unpack_limit const& limit = unpack_limit())
:parser_t(m_finalizer, initial_buffer_size),
detail::create_object_visitor(f, user_data, limit),
m_z(new msgpack::zone),
m_finalizer(*m_z) {
set_zone(*m_z);
set_referenced(false);
}
detail::create_object_visitor& visitor() { return *this; }
/// Unpack one msgpack::object.
/**
*
* @param result The object that contains unpacked data.
* @param referenced If the unpacked object contains reference of the buffer,
* then set as true, otherwise false.
*
* @return If one msgpack::object is unpacked, then return true, if msgpack::object is incomplete
* and additional data is required, then return false. If data format is invalid, throw
* msgpack::parse_error.
*
* See:
* https://github.com/msgpack/msgpack-c/wiki/v1_1_cpp_unpacker#msgpack-controls-a-buffer
*/
bool next(msgpack::object_handle& result, bool& referenced);
/// Unpack one msgpack::object.
/**
*
* @param result The object that contains unpacked data.
*
* @return If one msgpack::object is unpacked, then return true, if msgpack::object is incomplete
* and additional data is required, then return false. If data format is invalid, throw
* msgpack::parse_error.
*
* See:
* https://github.com/msgpack/msgpack-c/wiki/v1_1_cpp_unpacker#msgpack-controls-a-buffer
*/
bool next(msgpack::object_handle& result);
msgpack::zone* release_zone();
void reset_zone();
bool flush_zone();
private:
static bool default_reference_func(msgpack::type::object_type /*type*/, std::size_t /*len*/, void*) {
return true;
}
msgpack::unique_ptr<msgpack::zone> m_z;
zone_push_finalizer m_finalizer;
};
inline bool unpacker::next(msgpack::object_handle& result, bool& referenced) {
bool ret = parser_t::next();
if (ret) {
referenced = detail::create_object_visitor::referenced();
result.zone().reset( release_zone() );
result.set(data());
reset();
}
else {
result.zone().reset();
result.set(msgpack::object());
}
return ret;
}
inline bool unpacker::next(msgpack::object_handle& result) {
bool referenced;
return next(result, referenced);
}
inline msgpack::zone* unpacker::release_zone()
{
if(!flush_zone()) {
return MSGPACK_NULLPTR;
}
msgpack::zone* r = new msgpack::zone;
msgpack::zone* old = m_z.release();
m_z.reset(r);
set_zone(*m_z);
m_finalizer.set_zone(*m_z);
return old;
}
inline void unpacker::reset_zone()
{
m_z->clear();
}
inline bool unpacker::flush_zone()
{
if(referenced()) {
try {
m_z->push_finalizer(&detail::decr_count, get_raw_buffer());
} catch (...) {
return false;
}
set_referenced(false);
detail::incr_count(get_raw_buffer());
}
return true;
}
inline msgpack::object_handle unpack(
const char* data, std::size_t len, std::size_t& off, bool& referenced,
unpack_reference_func f, void* user_data,
unpack_limit const& limit
)
{
msgpack::object obj;
msgpack::unique_ptr<msgpack::zone> z(new msgpack::zone);
referenced = false;
std::size_t noff = off;
unpack_return ret = detail::unpack_imp(
data, len, noff, *z, obj, referenced, f, user_data, limit);
switch(ret) {
case UNPACK_SUCCESS:
off = noff;
return msgpack::object_handle(obj, msgpack::move(z));
case UNPACK_EXTRA_BYTES:
off = noff;
return msgpack::object_handle(obj, msgpack::move(z));
default:
break;
}
return msgpack::object_handle();
}
inline msgpack::object_handle unpack(
const char* data, std::size_t len, std::size_t& off,
unpack_reference_func f, void* user_data,
unpack_limit const& limit)
{
bool referenced;
return msgpack::v2::unpack(data, len, off, referenced, f, user_data, limit);
}
inline msgpack::object_handle unpack(
const char* data, std::size_t len, bool& referenced,
unpack_reference_func f, void* user_data,
unpack_limit const& limit)
{
std::size_t off = 0;
return msgpack::v2::unpack(data, len, off, referenced, f, user_data, limit);
}
inline msgpack::object_handle unpack(
const char* data, std::size_t len,
unpack_reference_func f, void* user_data,
unpack_limit const& limit)
{
bool referenced;
std::size_t off = 0;
return msgpack::v2::unpack(data, len, off, referenced, f, user_data, limit);
}
inline void unpack(
msgpack::object_handle& result,
const char* data, std::size_t len, std::size_t& off, bool& referenced,
unpack_reference_func f, void* user_data,
unpack_limit const& limit)
{
msgpack::object obj;
msgpack::unique_ptr<msgpack::zone> z(new msgpack::zone);
referenced = false;
std::size_t noff = off;
unpack_return ret = detail::unpack_imp(
data, len, noff, *z, obj, referenced, f, user_data, limit);
switch(ret) {
case UNPACK_SUCCESS:
off = noff;
result.set(obj);
result.zone() = msgpack::move(z);
return;
case UNPACK_EXTRA_BYTES:
off = noff;
result.set(obj);
result.zone() = msgpack::move(z);
return;
default:
return;
}
}
inline void unpack(
msgpack::object_handle& result,
const char* data, std::size_t len, std::size_t& off,
msgpack::v2::unpack_reference_func f, void* user_data,
unpack_limit const& limit)
{
bool referenced;
msgpack::v2::unpack(result, data, len, off, referenced, f, user_data, limit);
}
inline void unpack(
msgpack::object_handle& result,
const char* data, std::size_t len, bool& referenced,
unpack_reference_func f, void* user_data,
unpack_limit const& limit)
{
std::size_t off = 0;
msgpack::v2::unpack(result, data, len, off, referenced, f, user_data, limit);
}
inline void unpack(
msgpack::object_handle& result,
const char* data, std::size_t len,
unpack_reference_func f, void* user_data,
unpack_limit const& limit)
{
bool referenced;
std::size_t off = 0;
msgpack::v2::unpack(result, data, len, off, referenced, f, user_data, limit);
}
inline msgpack::object unpack(
msgpack::zone& z,
const char* data, std::size_t len, std::size_t& off, bool& referenced,
unpack_reference_func f, void* user_data,
unpack_limit const& limit)
{
msgpack::object obj;
std::size_t noff = off;
referenced = false;
unpack_return ret = detail::unpack_imp(
data, len, noff, z, obj, referenced, f, user_data, limit);
switch(ret) {
case UNPACK_SUCCESS:
off = noff;
return obj;
case UNPACK_EXTRA_BYTES:
off = noff;
return obj;
default:
break;
}
return obj;
}
inline msgpack::object unpack(
msgpack::zone& z,
const char* data, std::size_t len, std::size_t& off,
unpack_reference_func f, void* user_data,
unpack_limit const& limit)
{
bool referenced;
return msgpack::v2::unpack(z, data, len, off, referenced, f, user_data, limit);
}
inline msgpack::object unpack(
msgpack::zone& z,
const char* data, std::size_t len, bool& referenced,
unpack_reference_func f, void* user_data,
unpack_limit const& limit)
{
std::size_t off = 0;
return msgpack::v2::unpack(z, data, len, off, referenced, f, user_data, limit);
}
inline msgpack::object unpack(
msgpack::zone& z,
const char* data, std::size_t len,
unpack_reference_func f, void* user_data,
unpack_limit const& limit)
{
bool referenced;
std::size_t off = 0;
return msgpack::v2::unpack(z, data, len, off, referenced, f, user_data, limit);
}
template <typename Visitor>
inline bool parse(const char* data, size_t len, size_t& off, Visitor& v) {
unpack_return ret = detail::parse_imp(data, len, off, v);
return ret == UNPACK_SUCCESS || ret == UNPACK_EXTRA_BYTES;
}
template <typename Visitor>
inline bool parse(const char* data, size_t len, Visitor& v) {
std::size_t off = 0;
return parse(data, len, off, v);
}
namespace detail {
template <typename Visitor>
struct parse_helper : context<parse_helper<Visitor> > {
parse_helper(Visitor& v):m_visitor(v) {}
unpack_return execute(const char* data, std::size_t len, std::size_t& off) {
return context<parse_helper<Visitor> >::execute(data, len, off);
}
Visitor& visitor() const { return m_visitor; }
Visitor& m_visitor;
};
template <typename Visitor>
inline unpack_return
parse_imp(const char* data, size_t len, size_t& off, Visitor& v) {
std::size_t noff = off;
if(len <= noff) {
// FIXME
v.insufficient_bytes(noff, noff);
return UNPACK_CONTINUE;
}
detail::parse_helper<Visitor> h(v);
unpack_return ret = h.execute(data, len, noff);
switch (ret) {
case UNPACK_CONTINUE:
off = noff;
v.insufficient_bytes(noff - 1, noff);
return ret;
case UNPACK_SUCCESS:
off = noff;
if(noff < len) {
return UNPACK_EXTRA_BYTES;
}
return ret;
default:
return ret;
}
}
inline unpack_return
unpack_imp(const char* data, std::size_t len, std::size_t& off,
msgpack::zone& result_zone, msgpack::object& result, bool& referenced,
unpack_reference_func f = MSGPACK_NULLPTR, void* user_data = MSGPACK_NULLPTR,
unpack_limit const& limit = unpack_limit())
{
create_object_visitor v(f, user_data, limit);
v.set_zone(result_zone);
referenced = false;
v.set_referenced(referenced);
unpack_return ret = parse_imp(data, len, off, v);
referenced = v.referenced();
result = v.data();
return ret;
}
} // detail
/// @cond
} // MSGPACK_API_VERSION_NAMESPACE(v2)
/// @endcond
} // namespace msgpack
#endif // MSGPACK_V2_UNPACK_HPP