2023-07-04 06:56:39 +00:00

358 lines
12 KiB
C++

//
// MessagePack for C++ static resolution routine
//
// Copyright (C) 2017 KONDO Takatoshi
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef MSGPACK_V1_TYPE_CPP11_CHRONO_HPP
#define MSGPACK_V1_TYPE_CPP11_CHRONO_HPP
#include "msgpack/versioning.hpp"
#include "msgpack/adaptor/adaptor_base.hpp"
#include "msgpack/object.hpp"
#include "msgpack/adaptor/check_container_size.hpp"
#include <limits>
#include <chrono>
namespace msgpack {
/// @cond
MSGPACK_API_VERSION_NAMESPACE(v1) {
/// @endcond
namespace adaptor {
namespace detail {
template <
typename Target,
typename Source,
bool target_is_signed = std::is_signed<Target>::value,
bool source_is_signed = std::is_signed<Source>::value,
typename = typename std::enable_if<
std::is_integral<Target>::value &&
std::is_integral<Source>::value
>::type
>
struct would_underflow {
// The default case includes the cases that Source being unsigned, and since Source
// is unsigned, no underflow can happen
would_underflow(Source) : value{false} {}
bool value;
};
template <typename Target, typename Source>
struct would_underflow<Target, Source, false, true> {
// When Source is signed and Target is unsigned, we only need to compare with 0 to
// detect underflow, this works correctly and also avoids warnings from the compiler
would_underflow(Source source) : value{source < 0} {}
bool value;
};
template <typename Target, typename Source>
struct would_underflow<Target, Source, true, true> {
// When Source and Target are signed, the promotion rules apply sensibly so we do
// not need to do anything
would_underflow(Source source)
: value{source < std::numeric_limits<Target>::min()} {}
bool value;
};
template <
typename Target,
typename Source,
bool target_is_signed = std::is_signed<Target>::value,
bool source_is_signed = std::is_signed<Source>::value,
typename = typename std::enable_if<
std::is_integral<Target>::value &&
std::is_integral<Source>::value
>::type
>
struct would_overflow {
// The default case is Source and Target having the same signedness, the promotion
// rule also apply sensibly here so nothing special needs to be done
would_overflow(Source source)
: value{source > std::numeric_limits<Target>::max()} {}
bool value;
};
template <typename Target, typename Source>
struct would_overflow <Target, Source, false, true> {
// When Target is unsigned and Source is signed, we cannot rely on the promotion
// rule.
would_overflow(Source source)
: value{
sizeof(Target) >= sizeof(Source)
// Given Source is signed, Target being unsigned and having at least the
// same size makes impossible to overflow
? false
// Source being larger than Target makes it safe to cast the maximum value
// of Target to Source
: source > static_cast<Source>(std::numeric_limits<Target>::max())
} {}
bool value;
};
template <typename Target, typename Source>
struct would_overflow <Target, Source, true, false> {
// When Target is signed and Source is unsigned, we cannot rely on the promotion
// rule.
would_overflow(Source source)
: value{
sizeof(Target) > sizeof(Source)
// Target being larger than Source makes it impossible to overflow
? false
// Source being unsigned and having at least the size of Target makes it
// safe to cast the maximum value of Target to Source
: source > static_cast<Source>(std::numeric_limits<Target>::max())
} {}
bool value;
};
template <
typename Target,
typename Source,
typename = typename std::enable_if<
std::is_integral<Target>::value &&
std::is_integral<Source>::value
>::type
>
Target integral_cast(Source source) {
if (would_underflow<Target, Source>(source).value) {
throw std::underflow_error{
"casting from Source to Target causes an underflow error"
};
}
if(would_overflow<Target, Source>(source).value) {
throw std::overflow_error{
"casting from Source to Target causes an overflow error"
};
}
return static_cast<Target>(source);
}
} // namespace detail
template <typename Clock, typename Duration>
struct as<std::chrono::time_point<Clock, Duration>> {
typename std::chrono::time_point<Clock, Duration> operator()(msgpack::object const& o) const {
if(o.type != msgpack::type::EXT) { throw msgpack::type_error(); }
if(o.via.ext.type() != -1) { throw msgpack::type_error(); }
std::chrono::time_point<Clock, Duration> tp;
switch(o.via.ext.size) {
case 4: {
uint32_t sec;
_msgpack_load32(uint32_t, o.via.ext.data(), &sec);
tp += std::chrono::seconds(sec);
} break;
case 8: {
uint64_t value;
_msgpack_load64(uint64_t, o.via.ext.data(), &value);
uint32_t nanosec = detail::integral_cast<uint32_t>(value >> 34);
uint64_t sec = value & 0x00000003ffffffffLL;
tp += std::chrono::duration_cast<Duration>(
std::chrono::nanoseconds(nanosec));
tp += std::chrono::seconds(sec);
} break;
case 12: {
uint32_t nanosec;
_msgpack_load32(uint32_t, o.via.ext.data(), &nanosec);
int64_t sec;
_msgpack_load64(int64_t, o.via.ext.data() + 4, &sec);
if (sec > 0) {
tp += std::chrono::seconds(sec);
tp += std::chrono::duration_cast<Duration>(
std::chrono::nanoseconds(nanosec));
}
else {
if (nanosec == 0) {
tp += std::chrono::seconds(sec);
}
else {
++sec;
tp += std::chrono::seconds(sec);
int64_t ns = detail::integral_cast<int64_t>(nanosec) - 1000000000L;
tp += std::chrono::duration_cast<Duration>(
std::chrono::nanoseconds(ns));
}
}
} break;
default:
throw msgpack::type_error();
}
return tp;
}
};
template <typename Clock, typename Duration>
struct convert<std::chrono::time_point<Clock, Duration>> {
msgpack::object const& operator()(msgpack::object const& o, std::chrono::time_point<Clock, Duration>& v) const {
if(o.type != msgpack::type::EXT) { throw msgpack::type_error(); }
if(o.via.ext.type() != -1) { throw msgpack::type_error(); }
std::chrono::time_point<Clock, Duration> tp;
switch(o.via.ext.size) {
case 4: {
uint32_t sec;
_msgpack_load32(uint32_t, o.via.ext.data(), &sec);
tp += std::chrono::seconds(sec);
v = tp;
} break;
case 8: {
uint64_t value;
_msgpack_load64(uint64_t, o.via.ext.data(), &value);
uint32_t nanosec = detail::integral_cast<uint32_t>(value >> 34);
uint64_t sec = value & 0x00000003ffffffffLL;
tp += std::chrono::duration_cast<Duration>(
std::chrono::nanoseconds(nanosec));
tp += std::chrono::seconds(sec);
v = tp;
} break;
case 12: {
uint32_t nanosec;
_msgpack_load32(uint32_t, o.via.ext.data(), &nanosec);
int64_t sec;
_msgpack_load64(int64_t, o.via.ext.data() + 4, &sec);
if (sec > 0) {
tp += std::chrono::seconds(sec);
tp += std::chrono::duration_cast<Duration>(
std::chrono::nanoseconds(nanosec));
}
else {
if (nanosec == 0) {
tp += std::chrono::seconds(sec);
}
else {
++sec;
tp += std::chrono::seconds(sec);
int64_t ns = detail::integral_cast<int64_t>(nanosec) - 1000000000L;
tp += std::chrono::duration_cast<Duration>(
std::chrono::nanoseconds(ns));
}
}
v = tp;
} break;
default:
throw msgpack::type_error();
}
return o;
}
};
template <typename Clock, typename Duration>
struct pack<std::chrono::time_point<Clock, Duration>> {
template <typename Stream>
msgpack::packer<Stream>& operator()(msgpack::packer<Stream>& o, std::chrono::time_point<Clock, Duration> const& v) const {
int64_t count = detail::integral_cast<int64_t>(v.time_since_epoch().count());
int64_t nano_num =
Duration::period::ratio::num *
(1000000000L / Duration::period::ratio::den);
int64_t nanosec = count % (1000000000L / nano_num) * nano_num;
int64_t sec = 0;
if (nanosec < 0) {
nanosec = 1000000000L + nanosec;
--sec;
}
sec += count
* Duration::period::ratio::num
/ Duration::period::ratio::den;
if ((sec >> 34) == 0) {
uint64_t data64 = (detail::integral_cast<uint64_t>(nanosec) << 34) | detail::integral_cast<uint64_t>(sec);
if ((data64 & 0xffffffff00000000L) == 0) {
// timestamp 32
o.pack_ext(4, -1);
uint32_t data32 = detail::integral_cast<uint32_t>(data64);
char buf[4];
_msgpack_store32(buf, data32);
o.pack_ext_body(buf, 4);
}
else {
// timestamp 64
o.pack_ext(8, -1);
char buf[8];
_msgpack_store64(buf, data64);
o.pack_ext_body(buf, 8);
}
}
else {
// timestamp 96
o.pack_ext(12, -1);
char buf[12];
_msgpack_store32(&buf[0], detail::integral_cast<uint32_t>(nanosec));
_msgpack_store64(&buf[4], sec);
o.pack_ext_body(buf, 12);
}
return o;
}
};
template <typename Clock, typename Duration>
struct object_with_zone<std::chrono::time_point<Clock, Duration>> {
void operator()(msgpack::object::with_zone& o, const std::chrono::time_point<Clock, Duration>& v) const {
int64_t count = detail::integral_cast<int64_t>(v.time_since_epoch().count());
int64_t nano_num =
Duration::period::ratio::num *
(1000000000L / Duration::period::ratio::den);
int64_t nanosec = count % (1000000000L / nano_num) * nano_num;
int64_t sec = 0;
if (nanosec < 0) {
nanosec = 1000000000L + nanosec;
--sec;
}
sec += count
* Duration::period::ratio::num
/ Duration::period::ratio::den;
if ((sec >> 34) == 0) {
uint64_t data64 = (detail::integral_cast<uint64_t>(nanosec) << 34) | detail::integral_cast<uint64_t>(sec);
if ((data64 & 0xffffffff00000000L) == 0) {
// timestamp 32
o.type = msgpack::type::EXT;
o.via.ext.size = 4;
char* p = static_cast<char*>(o.zone.allocate_no_align(o.via.ext.size + 1));
p[0] = static_cast<char>(-1);
uint32_t data32 = detail::integral_cast<uint32_t>(data64);
_msgpack_store32(&p[1], data32);
o.via.ext.ptr = p;
}
else {
// timestamp 64
o.type = msgpack::type::EXT;
o.via.ext.size = 8;
char* p = static_cast<char*>(o.zone.allocate_no_align(o.via.ext.size + 1));
p[0] = static_cast<char>(-1);
_msgpack_store64(&p[1], data64);
o.via.ext.ptr = p;
}
}
else {
// timestamp 96
o.type = msgpack::type::EXT;
o.via.ext.size = 12;
char* p = static_cast<char*>(o.zone.allocate_no_align(o.via.ext.size + 1));
p[0] = static_cast<char>(-1);
_msgpack_store32(&p[1], detail::integral_cast<uint32_t>(nanosec));
_msgpack_store64(&p[1 + 4], sec);
o.via.ext.ptr = p;
}
}
};
} // namespace adaptor
/// @cond
} // MSGPACK_API_VERSION_NAMESPACE(v1)
/// @endcond
} // namespace msgpack
#endif // MSGPACK_V1_TYPE_CPP11_CHRONO_HPP