msgpack/test/msgpack_container.cpp
2015-07-05 09:23:43 +09:00

437 lines
13 KiB
C++

#include <msgpack.hpp>
#include <cmath>
#include <string>
#include <vector>
#include <map>
#include <deque>
#include <set>
#include <list>
#include <limits>
#include <gtest/gtest.h>
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
using namespace std;
const unsigned int kLoop = 1000;
const unsigned int kElements = 100;
TEST(MSGPACK_STL, simple_buffer_vector)
{
for (unsigned int k = 0; k < kLoop; k++) {
vector<int> val1;
for (unsigned int i = 0; i < kElements; i++)
val1.push_back(rand());
msgpack::sbuffer sbuf;
msgpack::pack(sbuf, val1);
msgpack::unpacked ret;
msgpack::unpack(ret, sbuf.data(), sbuf.size());
EXPECT_EQ(ret.get().type, msgpack::type::ARRAY);
vector<int> val2 = ret.get().as<vector<int> >();
EXPECT_EQ(val1.size(), val2.size());
EXPECT_TRUE(equal(val1.begin(), val1.end(), val2.begin()));
}
}
TEST(MSGPACK_STL, simple_buffer_vector_char)
{
for (unsigned int k = 0; k < kLoop; k++) {
vector<char> val1;
for (unsigned int i = 0; i < kElements; i++)
val1.push_back(rand());
msgpack::sbuffer sbuf;
msgpack::pack(sbuf, val1);
msgpack::unpacked ret;
msgpack::unpack(ret, sbuf.data(), sbuf.size());
EXPECT_EQ(ret.get().type, msgpack::type::BIN);
vector<char> val2 = ret.get().as<vector<char> >();
EXPECT_EQ(val1.size(), val2.size());
EXPECT_TRUE(equal(val1.begin(), val1.end(), val2.begin()));
}
}
TEST(MSGPACK_STL, simple_buffer_vector_bool)
{
vector<bool> val1;
for (unsigned int i = 0; i < kElements; i++)
val1.push_back(i % 2 ? false : true);
msgpack::sbuffer sbuf;
msgpack::pack(sbuf, val1);
msgpack::unpacked ret;
msgpack::unpack(ret, sbuf.data(), sbuf.size());
EXPECT_EQ(ret.get().type, msgpack::type::ARRAY);
vector<bool> val2 = ret.get().as<vector<bool> >();
EXPECT_EQ(val1.size(), val2.size());
EXPECT_TRUE(equal(val1.begin(), val1.end(), val2.begin()));
}
TEST(MSGPACK_STL, simple_buffer_map)
{
for (unsigned int k = 0; k < kLoop; k++) {
map<int, int> val1;
for (unsigned int i = 0; i < kElements; i++)
val1[rand()] = rand();
msgpack::sbuffer sbuf;
msgpack::pack(sbuf, val1);
msgpack::unpacked ret;
msgpack::unpack(ret, sbuf.data(), sbuf.size());
map<int, int> val2 = ret.get().as<map<int, int> >();
EXPECT_EQ(val1.size(), val2.size());
EXPECT_TRUE(equal(val1.begin(), val1.end(), val2.begin()));
}
}
TEST(MSGPACK_STL, simple_buffer_deque)
{
for (unsigned int k = 0; k < kLoop; k++) {
deque<int> val1;
for (unsigned int i = 0; i < kElements; i++)
val1.push_back(rand());
msgpack::sbuffer sbuf;
msgpack::pack(sbuf, val1);
msgpack::unpacked ret;
msgpack::unpack(ret, sbuf.data(), sbuf.size());
deque<int> val2 = ret.get().as<deque<int> >();
EXPECT_EQ(val1.size(), val2.size());
EXPECT_TRUE(equal(val1.begin(), val1.end(), val2.begin()));
}
}
TEST(MSGPACK_STL, simple_buffer_list)
{
for (unsigned int k = 0; k < kLoop; k++) {
list<int> val1;
for (unsigned int i = 0; i < kElements; i++)
val1.push_back(rand());
msgpack::sbuffer sbuf;
msgpack::pack(sbuf, val1);
msgpack::unpacked ret;
msgpack::unpack(ret, sbuf.data(), sbuf.size());
list<int> val2 = ret.get().as<list<int> >();
EXPECT_EQ(val1.size(), val2.size());
EXPECT_TRUE(equal(val1.begin(), val1.end(), val2.begin()));
}
}
TEST(MSGPACK_STL, simple_buffer_set)
{
for (unsigned int k = 0; k < kLoop; k++) {
set<int> val1;
for (unsigned int i = 0; i < kElements; i++)
val1.insert(rand());
msgpack::sbuffer sbuf;
msgpack::pack(sbuf, val1);
msgpack::unpacked ret;
msgpack::unpack(ret, sbuf.data(), sbuf.size());
set<int> val2 = ret.get().as<set<int> >();
EXPECT_EQ(val1.size(), val2.size());
EXPECT_TRUE(equal(val1.begin(), val1.end(), val2.begin()));
}
}
TEST(MSGPACK_STL, simple_buffer_pair)
{
for (unsigned int k = 0; k < kLoop; k++) {
pair<int, int> val1 = make_pair(rand(), rand());
msgpack::sbuffer sbuf;
msgpack::pack(sbuf, val1);
msgpack::unpacked ret;
msgpack::unpack(ret, sbuf.data(), sbuf.size());
pair<int, int> val2 = ret.get().as<pair<int, int> >();
EXPECT_EQ(val1.first, val2.first);
EXPECT_EQ(val1.second, val2.second);
}
}
TEST(MSGPACK_STL, simple_buffer_multimap)
{
for (unsigned int k = 0; k < kLoop; k++) {
multimap<int, int> val1;
for (unsigned int i = 0; i < kElements; i++) {
int i1 = rand();
val1.insert(make_pair(i1, rand()));
val1.insert(make_pair(i1, rand()));
}
msgpack::sbuffer sbuf;
msgpack::pack(sbuf, val1);
msgpack::unpacked ret;
msgpack::unpack(ret, sbuf.data(), sbuf.size());
multimap<int, int> val2 = ret.get().as<multimap<int, int> >();
vector<pair<int, int> > v1, v2;
multimap<int, int>::const_iterator it;
for (it = val1.begin(); it != val1.end(); ++it)
v1.push_back(make_pair(it->first, it->second));
for (it = val2.begin(); it != val2.end(); ++it)
v2.push_back(make_pair(it->first, it->second));
EXPECT_EQ(val1.size(), val2.size());
EXPECT_EQ(v1.size(), v2.size());
sort(v1.begin(), v1.end());
sort(v2.begin(), v2.end());
EXPECT_TRUE(v1 == v2);
}
}
TEST(MSGPACK_STL, simple_buffer_multiset)
{
for (unsigned int k = 0; k < kLoop; k++) {
multiset<int> val1;
for (unsigned int i = 0; i < kElements; i++)
val1.insert(rand());
msgpack::sbuffer sbuf;
msgpack::pack(sbuf, val1);
msgpack::unpacked ret;
msgpack::unpack(ret, sbuf.data(), sbuf.size());
multiset<int> val2 = ret.get().as<multiset<int> >();
vector<int> v1, v2;
multiset<int>::const_iterator it;
for (it = val1.begin(); it != val1.end(); ++it)
v1.push_back(*it);
for (it = val2.begin(); it != val2.end(); ++it)
v2.push_back(*it);
EXPECT_EQ(val1.size(), val2.size());
EXPECT_EQ(v1.size(), v2.size());
sort(v1.begin(), v1.end());
sort(v2.begin(), v2.end());
EXPECT_TRUE(v1 == v2);
}
}
TEST(MSGPACK_TUPLE, simple_tuple)
{
msgpack::sbuffer sbuf;
msgpack::type::tuple<bool, std::string, double> val1(true, "kzk", 12.3);
msgpack::pack(sbuf, val1);
msgpack::unpacked ret;
msgpack::unpack(ret, sbuf.data(), sbuf.size());
msgpack::type::tuple<bool, std::string, double> val2
= ret.get().as<msgpack::type::tuple<bool, std::string, double> >();
EXPECT_EQ(ret.get().via.array.size, 3);
EXPECT_EQ(val1.get<0>(), val2.get<0>());
EXPECT_EQ(val1.get<1>(), val2.get<1>());
EXPECT_EQ(val1.get<2>(), val2.get<2>());
}
TEST(MSGPACK_TUPLE, simple_tuple_empty)
{
msgpack::sbuffer sbuf;
msgpack::type::tuple<> val1;
msgpack::pack(sbuf, val1);
msgpack::unpacked ret;
msgpack::unpack(ret, sbuf.data(), sbuf.size());
ret.get().as<msgpack::type::tuple<> >();
EXPECT_EQ(ret.get().via.array.size, 0);
}
// TR1
#ifdef MSGPACK_HAS_STD_TR1_UNORDERED_MAP
#include <tr1/unordered_map>
#include "msgpack/adaptor/tr1/unordered_map.hpp"
TEST(MSGPACK_TR1, simple_buffer_tr1_unordered_map)
{
for (unsigned int k = 0; k < kLoop; k++) {
tr1::unordered_map<int, int> val1;
for (unsigned int i = 0; i < kElements; i++)
val1[rand()] = rand();
msgpack::sbuffer sbuf;
msgpack::pack(sbuf, val1);
msgpack::unpacked ret;
msgpack::unpack(ret, sbuf.data(), sbuf.size());
tr1::unordered_map<int, int> val2 = ret.get().as<tr1::unordered_map<int, int> >();
EXPECT_EQ(val1.size(), val2.size());
tr1::unordered_map<int, int>::const_iterator it;
for (it = val1.begin(); it != val1.end(); ++it) {
EXPECT_TRUE(val2.find(it->first) != val2.end());
EXPECT_EQ(it->second, val2.find(it->first)->second);
}
}
}
TEST(MSGPACK_TR1, simple_buffer_tr1_unordered_multimap)
{
for (unsigned int k = 0; k < kLoop; k++) {
tr1::unordered_multimap<int, int> val1;
for (unsigned int i = 0; i < kElements; i++) {
int i1 = rand();
val1.insert(make_pair(i1, rand()));
val1.insert(make_pair(i1, rand()));
}
msgpack::sbuffer sbuf;
msgpack::pack(sbuf, val1);
msgpack::unpacked ret;
msgpack::unpack(ret, sbuf.data(), sbuf.size());
tr1::unordered_multimap<int, int> val2 = ret.get().as<tr1::unordered_multimap<int, int> >();
vector<pair<int, int> > v1, v2;
tr1::unordered_multimap<int, int>::const_iterator it;
for (it = val1.begin(); it != val1.end(); ++it)
v1.push_back(make_pair(it->first, it->second));
for (it = val2.begin(); it != val2.end(); ++it)
v2.push_back(make_pair(it->first, it->second));
EXPECT_EQ(val1.size(), val2.size());
EXPECT_EQ(v1.size(), v2.size());
sort(v1.begin(), v1.end());
sort(v2.begin(), v2.end());
EXPECT_TRUE(v1 == v2);
}
}
#endif
#ifdef MSGPACK_HAS_STD_TR1_UNORDERED_SET
#include <tr1/unordered_set>
#include "msgpack/adaptor/tr1/unordered_set.hpp"
TEST(MSGPACK_TR1, simple_buffer_tr1_unordered_set)
{
for (unsigned int k = 0; k < kLoop; k++) {
tr1::unordered_set<int> val1;
for (unsigned int i = 0; i < kElements; i++)
val1.insert(rand());
msgpack::sbuffer sbuf;
msgpack::pack(sbuf, val1);
msgpack::unpacked ret;
msgpack::unpack(ret, sbuf.data(), sbuf.size());
tr1::unordered_set<int> val2 = ret.get().as<tr1::unordered_set<int> >();
EXPECT_EQ(val1.size(), val2.size());
tr1::unordered_set<int>::const_iterator it;
for (it = val1.begin(); it != val1.end(); ++it)
EXPECT_TRUE(val2.find(*it) != val2.end());
}
}
TEST(MSGPACK_TR1, simple_buffer_tr1_unordered_multiset)
{
for (unsigned int k = 0; k < kLoop; k++) {
tr1::unordered_multiset<int> val1;
for (unsigned int i = 0; i < kElements; i++)
val1.insert(rand());
msgpack::sbuffer sbuf;
msgpack::pack(sbuf, val1);
msgpack::unpacked ret;
msgpack::unpack(ret, sbuf.data(), sbuf.size());
tr1::unordered_multiset<int> val2 = ret.get().as<tr1::unordered_multiset<int> >();
vector<int> v1, v2;
tr1::unordered_multiset<int>::const_iterator it;
for (it = val1.begin(); it != val1.end(); ++it)
v1.push_back(*it);
for (it = val2.begin(); it != val2.end(); ++it)
v2.push_back(*it);
EXPECT_EQ(val1.size(), val2.size());
EXPECT_EQ(v1.size(), v2.size());
sort(v1.begin(), v1.end());
sort(v2.begin(), v2.end());
EXPECT_TRUE(v1 == v2);
}
}
#endif
#ifdef MSGPACK_HAS_STD_UNORDERED_MAP
#include <unordered_map>
#include "msgpack/adaptor/tr1/unordered_map.hpp"
TEST(MSGPACK_TR1, simple_buffer_unordered_map)
{
for (unsigned int k = 0; k < kLoop; k++) {
unordered_map<int, int> val1;
for (unsigned int i = 0; i < kElements; i++)
val1[rand()] = rand();
msgpack::sbuffer sbuf;
msgpack::pack(sbuf, val1);
msgpack::unpacked ret;
msgpack::unpack(ret, sbuf.data(), sbuf.size());
unordered_map<int, int> val2 = ret.get().as<unordered_map<int, int> >();
EXPECT_EQ(val1.size(), val2.size());
unordered_map<int, int>::const_iterator it;
for (it = val1.begin(); it != val1.end(); ++it) {
EXPECT_TRUE(val2.find(it->first) != val2.end());
EXPECT_EQ(it->second, val2.find(it->first)->second);
}
}
}
TEST(MSGPACK_TR1, simple_buffer_unordered_multimap)
{
for (unsigned int k = 0; k < kLoop; k++) {
unordered_multimap<int, int> val1;
for (unsigned int i = 0; i < kElements; i++) {
int i1 = rand();
val1.insert(make_pair(i1, rand()));
val1.insert(make_pair(i1, rand()));
}
msgpack::sbuffer sbuf;
msgpack::pack(sbuf, val1);
msgpack::unpacked ret;
msgpack::unpack(ret, sbuf.data(), sbuf.size());
unordered_multimap<int, int> val2 = ret.get().as<unordered_multimap<int, int> >();
vector<pair<int, int> > v1, v2;
unordered_multimap<int, int>::const_iterator it;
for (it = val1.begin(); it != val1.end(); ++it)
v1.push_back(make_pair(it->first, it->second));
for (it = val2.begin(); it != val2.end(); ++it)
v2.push_back(make_pair(it->first, it->second));
EXPECT_EQ(val1.size(), val2.size());
EXPECT_EQ(v1.size(), v2.size());
sort(v1.begin(), v1.end());
sort(v2.begin(), v2.end());
EXPECT_TRUE(v1 == v2);
}
}
#endif
#ifdef MSGPACK_HAS_STD_UNORDERED_SET
#include <unordered_set>
#include "msgpack/adaptor/tr1/unordered_set.hpp"
TEST(MSGPACK_TR1, simple_buffer_unordered_set)
{
for (unsigned int k = 0; k < kLoop; k++) {
unordered_set<int> val1;
for (unsigned int i = 0; i < kElements; i++)
val1.insert(rand());
msgpack::sbuffer sbuf;
msgpack::pack(sbuf, val1);
msgpack::unpacked ret;
msgpack::unpack(ret, sbuf.data(), sbuf.size());
unordered_set<int> val2 = ret.get().as<unordered_set<int> >();
EXPECT_EQ(val1.size(), val2.size());
unordered_set<int>::const_iterator it;
for (it = val1.begin(); it != val1.end(); ++it)
EXPECT_TRUE(val2.find(*it) != val2.end());
}
}
TEST(MSGPACK_TR1, simple_buffer_unordered_multiset)
{
for (unsigned int k = 0; k < kLoop; k++) {
unordered_multiset<int> val1;
for (unsigned int i = 0; i < kElements; i++)
val1.insert(rand());
msgpack::sbuffer sbuf;
msgpack::pack(sbuf, val1);
msgpack::unpacked ret;
msgpack::unpack(ret, sbuf.data(), sbuf.size());
unordered_multiset<int> val2 = ret.get().as<unordered_multiset<int> >();
vector<int> v1, v2;
unordered_multiset<int>::const_iterator it;
for (it = val1.begin(); it != val1.end(); ++it)
v1.push_back(*it);
for (it = val2.begin(); it != val2.end(); ++it)
v2.push_back(*it);
EXPECT_EQ(val1.size(), val2.size());
EXPECT_EQ(v1.size(), v2.size());
sort(v1.begin(), v1.end());
sort(v2.begin(), v2.end());
EXPECT_TRUE(v1 == v2);
}
}
#endif