msgpack/erlang/msgpack.erl
2010-07-08 23:36:18 +09:00

368 lines
12 KiB
Erlang

%%
%% MessagePack for Erlang
%%
%% Copyright (C) 2009-2010 UENISHI Kota
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%% http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
-module(msgpack).
-author('kuenishi+msgpack@gmail.com').
%% tuples, atoms are not supported. lists, integers, double, and so on.
%% see http://msgpack.sourceforge.jp/spec for
%% supported formats. APIs are almost compatible
%% for C API (http://msgpack.sourceforge.jp/c:doc)
%% except buffering functions (both copying and zero-copying).
-export([pack/1, unpack/1, unpack_all/1]).
-export([pack_map/1]).
% compile:
% erl> c(msgpack).
% erl> S = <some term>.
% erl> {S, <<>>} = msgpack:unpack( msgpack:pack(S) ).
-type reason() :: enomem | badarg | no_code_matches.
-type msgpack_term() :: [msgpack_term()]
| {[{msgpack_term(),msgpack_term()}]}
| integer() | float() | binary().
% ===== external APIs ===== %
-spec pack(Term::msgpack_term()) -> binary().
pack(I) when is_integer(I) andalso I < 0 ->
pack_int_(I);
pack(I) when is_integer(I) ->
pack_uint_(I);
pack(F) when is_float(F) ->
pack_double(F);
pack(nil) ->
<< 16#C0:8 >>;
pack(true) ->
<< 16#C3:8 >>;
pack(false) ->
<< 16#C2:8 >>;
pack(Bin) when is_binary(Bin) ->
pack_raw(Bin);
pack(List) when is_list(List) ->
pack_array(List);
pack({Map}) when is_list(Map) ->
pack_map(Map);
pack(Map) when is_tuple(Map), element(1,Map)=:=dict ->
pack_map(dict:to_list(Map));
pack(_Other) ->
{error, undefined}.
% unpacking.
% if failed in decoding and not end, get more data
% and feed more Bin into this function.
% TODO: error case for imcomplete format when short for any type formats.
-spec unpack( Bin::binary() )-> {msgpack_term(), binary()} |
{more, non_neg_integer()} | {more, undefined} |
{error, reason()}.
unpack(Bin) when not is_binary(Bin)->
{error, badarg};
unpack(Bin) when bit_size(Bin) >= 8 ->
unpack_(Bin);
unpack(<<>>)->
{more, 1};
unpack(_) ->
{more, undefined}.
-spec unpack_all( binary() ) -> [msgpack_term()].
unpack_all(Data)->
case unpack(Data) of
{ Term, Binary } when bit_size(Binary) =:= 0 ->
[Term];
{ Term, Binary } when is_binary(Binary) ->
[Term|unpack_all(Binary)]
end.
-spec pack_map(M::[{msgpack_term(),msgpack_term()}])-> binary().
pack_map(M)->
case length(M) of
Len when Len < 16 ->
<< 2#1000:4, Len:4/integer-unit:1, (pack_map_(M, <<>>))/binary >>;
Len when Len < 16#10000 -> % 65536
<< 16#DE:8, Len:16/big-unsigned-integer-unit:1, (pack_map_(M, <<>>))/binary >>;
Len ->
<< 16#DF:8, Len:32/big-unsigned-integer-unit:1, (pack_map_(M, <<>>))/binary >>
end.
% ===== internal APIs ===== %
% positive fixnum
pack_uint_(N) when N < 128 ->
<< 2#0:1, N:7 >>;
% uint 8
pack_uint_(N) when N < 256 ->
<< 16#CC:8, N:8 >>;
% uint 16
pack_uint_(N) when N < 65536 ->
<< 16#CD:8, N:16/big-unsigned-integer-unit:1 >>;
% uint 32
pack_uint_(N) when N < 16#FFFFFFFF->
<< 16#CE:8, N:32/big-unsigned-integer-unit:1 >>;
% uint 64
pack_uint_(N) ->
<< 16#CF:8, N:64/big-unsigned-integer-unit:1 >>.
% negative fixnum
pack_int_(N) when is_integer(N) , N >= -32->
<< 2#111:3, N:5 >>;
% int 8
pack_int_(N) when N > -128 ->
<< 16#D0:8, N:8/big-signed-integer-unit:1 >>;
% int 16
pack_int_(N) when N > -32768 ->
<< 16#D1:8, N:16/big-signed-integer-unit:1 >>;
% int 32
pack_int_(N) when N > -16#FFFFFFFF ->
<< 16#D2:8, N:32/big-signed-integer-unit:1 >>;
% int 64
pack_int_(N) ->
<< 16#D3:8, N:64/big-signed-integer-unit:1 >>.
% float : erlang's float is always IEEE 754 64bit format.
%pack_float(F) when is_float(F)->
% << 16#CA:8, F:32/big-float-unit:1 >>.
% pack_double(F).
% double
pack_double(F) ->
<< 16#CB:8, F:64/big-float-unit:1 >>.
% raw bytes
pack_raw(Bin) ->
case byte_size(Bin) of
Len when Len < 6->
<< 2#101:3, Len:5, Bin/binary >>;
Len when Len < 16#10000 -> % 65536
<< 16#DA:8, Len:16/big-unsigned-integer-unit:1, Bin/binary >>;
Len ->
<< 16#DB:8, Len:32/big-unsigned-integer-unit:1, Bin/binary >>
end.
% list / tuple
pack_array(L) ->
case length(L) of
Len when Len < 16 ->
<< 2#1001:4, Len:4/integer-unit:1, (pack_array_(L, <<>>))/binary >>;
Len when Len < 16#10000 -> % 65536
<< 16#DC:8, Len:16/big-unsigned-integer-unit:1,(pack_array_(L, <<>>))/binary >>;
Len ->
<< 16#DD:8, Len:32/big-unsigned-integer-unit:1,(pack_array_(L, <<>>))/binary >>
end.
pack_array_([], Acc) -> Acc;
pack_array_([Head|Tail], Acc) ->
pack_array_(Tail, <<Acc/binary, (pack(Head))/binary>>).
% FIXME! this should be without lists:reverse/1
unpack_array_(<<>>, 0, RetList) -> {lists:reverse(RetList), <<>>};
unpack_array_(Remain, 0, RetList) when is_binary(Remain)-> {lists:reverse(RetList), Remain};
unpack_array_(<<>>, RestLen, _RetList) when RestLen > 0 -> {more, undefined};
unpack_array_(Bin, RestLen, RetList) when is_binary(Bin)->
case unpack(Bin) of
{more, _} -> {more, undefined};
{Term, Rest}-> unpack_array_(Rest, RestLen-1, [Term|RetList])
end.
pack_map_([], Acc) -> Acc;
pack_map_([{Key,Value}|Tail], Acc) ->
pack_map_(Tail, << Acc/binary, (pack(Key))/binary, (pack(Value))/binary>>).
% FIXME! this should be without lists:reverse/1
-spec unpack_map_(binary(), non_neg_integer(), [{term(), msgpack_term()}])->
{more, non_neg_integer()} | { any(), binary()}.
unpack_map_(Bin, 0, Acc) -> {{lists:reverse(Acc)}, Bin};
unpack_map_(Bin, Len, Acc) ->
case unpack(Bin) of
{more, _} -> {more, undefined};
{Key, Rest} ->
case unpack(Rest) of
{more, _} -> {more, undefined};
{Value, Rest2} ->
unpack_map_(Rest2,Len-1,[{Key,Value}|Acc])
end
end.
-spec unpack_(Payload::binary()) ->
{more, pos_integer()} | {msgpack_term(), binary()} | {error, reason()}.
unpack_(Binary)->
case Binary of
% ATOMS
<<16#C0, Rest/binary>> -> {nil, Rest};
<<16#C2, Rest/binary>> -> {false, Rest};
<<16#C3, Rest/binary>> -> {true, Rest};
% Floats
<<16#CA, V:32/float-unit:1, Rest/binary>> -> {V, Rest};
<<16#CB, V:64/float-unit:1, Rest/binary>> -> {V, Rest};
% Unsigned integers
<<16#CC, V:8/unsigned-integer, Rest/binary>> -> {V, Rest};
<<16#CD, V:16/big-unsigned-integer-unit:1, Rest/binary>> -> {V, Rest};
<<16#CE, V:32/big-unsigned-integer-unit:1, Rest/binary>> -> {V, Rest};
<<16#CF, V:64/big-unsigned-integer-unit:1, Rest/binary>> -> {V, Rest};
% Signed integers
<<16#D0, V:8/signed-integer, Rest/binary>> -> {V, Rest};
<<16#D1, V:16/big-signed-integer-unit:1, Rest/binary>> -> {V, Rest};
<<16#D2, V:32/big-signed-integer-unit:1, Rest/binary>> -> {V, Rest};
<<16#D3, V:64/big-signed-integer-unit:1, Rest/binary>> -> {V, Rest};
% Raw bytes
<<16#DA, L:16/unsigned-integer-unit:1, V:L/binary, Rest/binary>> -> {V, Rest};
<<16#DB, L:32/unsigned-integer-unit:1, V:L/binary, Rest/binary>> -> {V, Rest};
% Arrays
<<16#DC, L:16/big-unsigned-integer-unit:1, Rest/binary>> -> unpack_array_(Rest, L, []);
<<16#DD, L:32/big-unsigned-integer-unit:1, Rest/binary>> -> unpack_array_(Rest, L, []);
% Maps
<<16#DE, L:16/big-unsigned-integer-unit:1, Rest/binary>> -> unpack_map_(Rest, L, []);
<<16#DF, L:32/big-unsigned-integer-unit:1, Rest/binary>> -> unpack_map_(Rest, L, []);
% Tag-encoded lengths (kept last, for speed)
<<0:1, V:7, Rest/binary>> -> {V, Rest}; % positive int
<<2#111:3, V:5, Rest/binary>> -> {V - 2#100000, Rest}; % negative int
<<2#101:3, L:5, V:L/binary, Rest/binary>> -> {V, Rest}; % raw bytes
<<2#1001:4, L:4, Rest/binary>> -> unpack_array_(Rest, L, []); % array
<<2#1000:4, L:4, Rest/binary>> -> unpack_map_(Rest, L, []); % map
% Incomplete / invalid data
<<16#CA, Rest/binary>> -> {more, 4-byte_size(Rest)};
<<16#CB, Rest/binary>> -> {more, 8-byte_size(Rest)};
<<16#CC>> -> {more, 1};
<<16#CD, Rest/binary>> -> {more, 2-byte_size(Rest)};
<<16#CE, Rest/binary>> -> {more, 4-byte_size(Rest)};
<<16#CF, Rest/binary>> -> {more, 8-byte_size(Rest)};
<<16#D0>> -> {more, 1};
<<16#D1, Rest/binary>> -> {more, 2-byte_size(Rest)};
<<16#D2, Rest/binary>> -> {more, 4-byte_size(Rest)};
<<16#D3, Rest/binary>> -> {more, 8-byte_size(Rest)};
<<16#DA, Rest/binary>> -> {more, 16-byte_size(Rest)};
<<16#DB, Rest/binary>> -> {more, 32-byte_size(Rest)};
<<16#DC, Rest/binary>> -> {more, 2-byte_size(Rest)};
<<16#DD, Rest/binary>> -> {more, 4-byte_size(Rest)};
<<16#DE, Rest/binary>> -> {more, 2-byte_size(Rest)};
<<16#DF, Rest/binary>> -> {more, 4-byte_size(Rest)};
<<2#101:3, L:5, Rest/binary>> -> {more, L-byte_size(Rest)};
<<>> -> {more, 1};
<<2#101:3, _/binary>> -> {more, undefined};
<<F:8, Rest/binary>> when F==16#C1;
F==16#C7; F==16#C8; F==16#C9; F==16#D5;
F==16#D6; F==16#D7; F==16#D8; F==16#D9->
{error, {badarg, <<F, Rest/binary>>}};
Other ->
{error, {badarg, Other}}
end.
% ===== test codes ===== %
-include_lib("eunit/include/eunit.hrl").
-ifdef(EUNIT).
compare_all([], [])-> ok;
compare_all([], R)-> {toomuchrhs, R};
compare_all(L, [])-> {toomuchlhs, L};
compare_all([LH|LTL], [RH|RTL]) ->
LH=RH,
compare_all(LTL, RTL).
test_data()->
[true, false, nil,
0, 1, 2, 123, 512, 1230, 678908, 16#FFFFFFFFFF,
-1, -23, -512, -1230, -567898, -16#FFFFFFFFFF,
123.123, -234.4355, 1.0e-34, 1.0e64,
[23, 234, 0.23],
<<"hogehoge">>, <<"243546rf7g68h798j", 0, 23, 255>>,
<<"hoasfdafdas][">>,
[0,42, <<"sum">>, [1,2]], [1,42, nil, [3]],
-234, -40000, -16#10000000, -16#100000000,
42
].
basic_test()->
Tests = test_data(),
Passed = test_(Tests),
Passed = length(Tests).
port_test()->
Tests = test_data(),
{[Tests],<<>>} = msgpack:unpack(msgpack:pack([Tests])),
Port = open_port({spawn, "ruby ../test/crosslang.rb"}, [binary]),
true = port_command(Port, msgpack:pack(Tests) ),
receive
{Port, {data, Data}}-> {Tests, <<>>}=msgpack:unpack(Data)
after 1024-> ?assert(false) end,
port_close(Port).
test_p(Len,Term,OrigBin,Len) ->
{Term, <<>>}=msgpack:unpack(OrigBin);
test_p(I,_,OrigBin,Len) when I < Len->
<<Bin:I/binary, _/binary>> = OrigBin,
case msgpack:unpack(Bin) of
{more, N} when not is_integer(N) ->
?assertEqual(undefined, N);
{more, N} ->
?assert( N < Len )
end.
partial_test()-> % error handling test.
Term = lists:seq(0, 45),
Bin=msgpack:pack(Term),
BinLen = byte_size(Bin),
[test_p(X, Term, Bin, BinLen) || X <- lists:seq(0,BinLen)].
long_test()->
Longer = lists:seq(0, 655),
% Longest = lists:seq(0,12345),
{Longer, <<>>} = msgpack:unpack(msgpack:pack(Longer)),
% {Longest, <<>>} = msgpack:unpack(msgpack:pack(Longest)).
ok.
map_test()->
Ints = lists:seq(0, 65),
Map = {[ {X, X*2} || X <- Ints ] ++ [{<<"hage">>, 324}, {43542, [nil, true, false]}]},
{Map2, <<>>} = msgpack:unpack(msgpack:pack(Map)),
?assertEqual(Map, Map2),
ok.
unknown_test()->
Tests = [0, 1, 2, 123, 512, 1230, 678908,
-1, -23, -512, -1230, -567898,
<<"hogehoge">>, <<"243546rf7g68h798j">>,
123.123,
-234.4355, 1.0e-34, 1.0e64,
[23, 234, 0.23],
[0,42,<<"sum">>, [1,2]], [1,42, nil, [3]],
{[{1,2},{<<"hoge">>,nil}]},
-234, -50000,
42
],
Port = open_port({spawn, "ruby testcase_generator.rb"}, [binary]),
receive
{Port, {data, Data}}->
compare_all(Tests, msgpack:unpack_all(Data))
after 1024-> ?assert(false) end,
port_close(Port).
test_([]) -> 0;
test_([Before|Rest])->
Pack = msgpack:pack(Before),
{After, <<>>} = msgpack:unpack( Pack ),
?assertEqual(Before, After),
1+test_(Rest).
other_test()->
{more,1}=msgpack:unpack(<<>>).
benchmark_test()->
Data=[test_data() || _ <- lists:seq(0, 10000)],
S=?debugTime(" serialize", msgpack:pack(Data)),
{Data,<<>>}=?debugTime("deserialize", msgpack:unpack(S)).
-endif.