#include #include #include #include #include #include #include #include #include #include #ifdef HAVE_CONFIG_H #include "config.h" #endif using namespace std; const unsigned int kLoop = 1000; const unsigned int kElements = 100; TEST(MSGPACK_STL, simple_buffer_vector) { for (unsigned int k = 0; k < kLoop; k++) { vector val1; for (unsigned int i = 0; i < kElements; i++) val1.push_back(rand()); msgpack::sbuffer sbuf; msgpack::pack(sbuf, val1); msgpack::unpacked ret; msgpack::unpack(ret, sbuf.data(), sbuf.size()); EXPECT_EQ(ret.get().type, msgpack::type::ARRAY); vector val2 = ret.get().as >(); EXPECT_EQ(val1.size(), val2.size()); EXPECT_TRUE(equal(val1.begin(), val1.end(), val2.begin())); } } TEST(MSGPACK_STL, simple_buffer_vector_char) { for (unsigned int k = 0; k < kLoop; k++) { vector val1; for (unsigned int i = 0; i < kElements; i++) val1.push_back(rand()); msgpack::sbuffer sbuf; msgpack::pack(sbuf, val1); msgpack::unpacked ret; msgpack::unpack(ret, sbuf.data(), sbuf.size()); EXPECT_EQ(ret.get().type, msgpack::type::BIN); vector val2 = ret.get().as >(); EXPECT_EQ(val1.size(), val2.size()); EXPECT_TRUE(equal(val1.begin(), val1.end(), val2.begin())); } } TEST(MSGPACK_STL, simple_buffer_vector_bool) { vector val1; for (unsigned int i = 0; i < kElements; i++) val1.push_back(i % 2 ? false : true); msgpack::sbuffer sbuf; msgpack::pack(sbuf, val1); msgpack::unpacked ret; msgpack::unpack(ret, sbuf.data(), sbuf.size()); EXPECT_EQ(ret.get().type, msgpack::type::ARRAY); vector val2 = ret.get().as >(); EXPECT_EQ(val1.size(), val2.size()); EXPECT_TRUE(equal(val1.begin(), val1.end(), val2.begin())); } TEST(MSGPACK_STL, simple_buffer_map) { for (unsigned int k = 0; k < kLoop; k++) { map val1; for (unsigned int i = 0; i < kElements; i++) val1[rand()] = rand(); msgpack::sbuffer sbuf; msgpack::pack(sbuf, val1); msgpack::unpacked ret; msgpack::unpack(ret, sbuf.data(), sbuf.size()); map val2 = ret.get().as >(); EXPECT_EQ(val1.size(), val2.size()); EXPECT_TRUE(equal(val1.begin(), val1.end(), val2.begin())); } } TEST(MSGPACK_STL, simple_buffer_deque) { for (unsigned int k = 0; k < kLoop; k++) { deque val1; for (unsigned int i = 0; i < kElements; i++) val1.push_back(rand()); msgpack::sbuffer sbuf; msgpack::pack(sbuf, val1); msgpack::unpacked ret; msgpack::unpack(ret, sbuf.data(), sbuf.size()); deque val2 = ret.get().as >(); EXPECT_EQ(val1.size(), val2.size()); EXPECT_TRUE(equal(val1.begin(), val1.end(), val2.begin())); } } TEST(MSGPACK_STL, simple_buffer_list) { for (unsigned int k = 0; k < kLoop; k++) { list val1; for (unsigned int i = 0; i < kElements; i++) val1.push_back(rand()); msgpack::sbuffer sbuf; msgpack::pack(sbuf, val1); msgpack::unpacked ret; msgpack::unpack(ret, sbuf.data(), sbuf.size()); list val2 = ret.get().as >(); EXPECT_EQ(val1.size(), val2.size()); EXPECT_TRUE(equal(val1.begin(), val1.end(), val2.begin())); } } TEST(MSGPACK_STL, simple_buffer_set) { for (unsigned int k = 0; k < kLoop; k++) { set val1; for (unsigned int i = 0; i < kElements; i++) val1.insert(rand()); msgpack::sbuffer sbuf; msgpack::pack(sbuf, val1); msgpack::unpacked ret; msgpack::unpack(ret, sbuf.data(), sbuf.size()); set val2 = ret.get().as >(); EXPECT_EQ(val1.size(), val2.size()); EXPECT_TRUE(equal(val1.begin(), val1.end(), val2.begin())); } } TEST(MSGPACK_STL, simple_buffer_pair) { for (unsigned int k = 0; k < kLoop; k++) { pair val1 = make_pair(rand(), rand()); msgpack::sbuffer sbuf; msgpack::pack(sbuf, val1); msgpack::unpacked ret; msgpack::unpack(ret, sbuf.data(), sbuf.size()); pair val2 = ret.get().as >(); EXPECT_EQ(val1.first, val2.first); EXPECT_EQ(val1.second, val2.second); } } TEST(MSGPACK_STL, simple_buffer_multimap) { for (unsigned int k = 0; k < kLoop; k++) { multimap val1; for (unsigned int i = 0; i < kElements; i++) { int i1 = rand(); val1.insert(make_pair(i1, rand())); val1.insert(make_pair(i1, rand())); } msgpack::sbuffer sbuf; msgpack::pack(sbuf, val1); msgpack::unpacked ret; msgpack::unpack(ret, sbuf.data(), sbuf.size()); multimap val2 = ret.get().as >(); vector > v1, v2; multimap::const_iterator it; for (it = val1.begin(); it != val1.end(); ++it) v1.push_back(make_pair(it->first, it->second)); for (it = val2.begin(); it != val2.end(); ++it) v2.push_back(make_pair(it->first, it->second)); EXPECT_EQ(val1.size(), val2.size()); EXPECT_EQ(v1.size(), v2.size()); sort(v1.begin(), v1.end()); sort(v2.begin(), v2.end()); EXPECT_TRUE(v1 == v2); } } TEST(MSGPACK_STL, simple_buffer_multiset) { for (unsigned int k = 0; k < kLoop; k++) { multiset val1; for (unsigned int i = 0; i < kElements; i++) val1.insert(rand()); msgpack::sbuffer sbuf; msgpack::pack(sbuf, val1); msgpack::unpacked ret; msgpack::unpack(ret, sbuf.data(), sbuf.size()); multiset val2 = ret.get().as >(); vector v1, v2; multiset::const_iterator it; for (it = val1.begin(); it != val1.end(); ++it) v1.push_back(*it); for (it = val2.begin(); it != val2.end(); ++it) v2.push_back(*it); EXPECT_EQ(val1.size(), val2.size()); EXPECT_EQ(v1.size(), v2.size()); sort(v1.begin(), v1.end()); sort(v2.begin(), v2.end()); EXPECT_TRUE(v1 == v2); } } TEST(MSGPACK_TUPLE, simple_tuple) { msgpack::sbuffer sbuf; msgpack::type::tuple val1(true, "kzk", 12.3); msgpack::pack(sbuf, val1); msgpack::unpacked ret; msgpack::unpack(ret, sbuf.data(), sbuf.size()); msgpack::type::tuple val2 = ret.get().as >(); EXPECT_EQ(ret.get().via.array.size, 3u); EXPECT_EQ(val1.get<0>(), val2.get<0>()); EXPECT_EQ(val1.get<1>(), val2.get<1>()); EXPECT_EQ(val1.get<2>(), val2.get<2>()); } TEST(MSGPACK_TUPLE, simple_tuple_empty) { msgpack::sbuffer sbuf; msgpack::type::tuple<> val1; msgpack::pack(sbuf, val1); msgpack::unpacked ret; msgpack::unpack(ret, sbuf.data(), sbuf.size()); ret.get().as >(); EXPECT_EQ(ret.get().via.array.size, 0u); } // TR1 #ifdef MSGPACK_HAS_STD_TR1_UNORDERED_MAP #include #include "msgpack/adaptor/tr1/unordered_map.hpp" TEST(MSGPACK_TR1, simple_buffer_tr1_unordered_map) { for (unsigned int k = 0; k < kLoop; k++) { tr1::unordered_map val1; for (unsigned int i = 0; i < kElements; i++) val1[rand()] = rand(); msgpack::sbuffer sbuf; msgpack::pack(sbuf, val1); msgpack::unpacked ret; msgpack::unpack(ret, sbuf.data(), sbuf.size()); tr1::unordered_map val2 = ret.get().as >(); EXPECT_EQ(val1.size(), val2.size()); tr1::unordered_map::const_iterator it; for (it = val1.begin(); it != val1.end(); ++it) { EXPECT_TRUE(val2.find(it->first) != val2.end()); EXPECT_EQ(it->second, val2.find(it->first)->second); } } } TEST(MSGPACK_TR1, simple_buffer_tr1_unordered_multimap) { for (unsigned int k = 0; k < kLoop; k++) { tr1::unordered_multimap val1; for (unsigned int i = 0; i < kElements; i++) { int i1 = rand(); val1.insert(make_pair(i1, rand())); val1.insert(make_pair(i1, rand())); } msgpack::sbuffer sbuf; msgpack::pack(sbuf, val1); msgpack::unpacked ret; msgpack::unpack(ret, sbuf.data(), sbuf.size()); tr1::unordered_multimap val2 = ret.get().as >(); vector > v1, v2; tr1::unordered_multimap::const_iterator it; for (it = val1.begin(); it != val1.end(); ++it) v1.push_back(make_pair(it->first, it->second)); for (it = val2.begin(); it != val2.end(); ++it) v2.push_back(make_pair(it->first, it->second)); EXPECT_EQ(val1.size(), val2.size()); EXPECT_EQ(v1.size(), v2.size()); sort(v1.begin(), v1.end()); sort(v2.begin(), v2.end()); EXPECT_TRUE(v1 == v2); } } #endif #ifdef MSGPACK_HAS_STD_TR1_UNORDERED_SET #include #include "msgpack/adaptor/tr1/unordered_set.hpp" TEST(MSGPACK_TR1, simple_buffer_tr1_unordered_set) { for (unsigned int k = 0; k < kLoop; k++) { tr1::unordered_set val1; for (unsigned int i = 0; i < kElements; i++) val1.insert(rand()); msgpack::sbuffer sbuf; msgpack::pack(sbuf, val1); msgpack::unpacked ret; msgpack::unpack(ret, sbuf.data(), sbuf.size()); tr1::unordered_set val2 = ret.get().as >(); EXPECT_EQ(val1.size(), val2.size()); tr1::unordered_set::const_iterator it; for (it = val1.begin(); it != val1.end(); ++it) EXPECT_TRUE(val2.find(*it) != val2.end()); } } TEST(MSGPACK_TR1, simple_buffer_tr1_unordered_multiset) { for (unsigned int k = 0; k < kLoop; k++) { tr1::unordered_multiset val1; for (unsigned int i = 0; i < kElements; i++) val1.insert(rand()); msgpack::sbuffer sbuf; msgpack::pack(sbuf, val1); msgpack::unpacked ret; msgpack::unpack(ret, sbuf.data(), sbuf.size()); tr1::unordered_multiset val2 = ret.get().as >(); vector v1, v2; tr1::unordered_multiset::const_iterator it; for (it = val1.begin(); it != val1.end(); ++it) v1.push_back(*it); for (it = val2.begin(); it != val2.end(); ++it) v2.push_back(*it); EXPECT_EQ(val1.size(), val2.size()); EXPECT_EQ(v1.size(), v2.size()); sort(v1.begin(), v1.end()); sort(v2.begin(), v2.end()); EXPECT_TRUE(v1 == v2); } } #endif #ifdef MSGPACK_HAS_STD_UNORDERED_MAP #include #include "msgpack/adaptor/tr1/unordered_map.hpp" TEST(MSGPACK_TR1, simple_buffer_unordered_map) { for (unsigned int k = 0; k < kLoop; k++) { unordered_map val1; for (unsigned int i = 0; i < kElements; i++) val1[rand()] = rand(); msgpack::sbuffer sbuf; msgpack::pack(sbuf, val1); msgpack::unpacked ret; msgpack::unpack(ret, sbuf.data(), sbuf.size()); unordered_map val2 = ret.get().as >(); EXPECT_EQ(val1.size(), val2.size()); unordered_map::const_iterator it; for (it = val1.begin(); it != val1.end(); ++it) { EXPECT_TRUE(val2.find(it->first) != val2.end()); EXPECT_EQ(it->second, val2.find(it->first)->second); } } } TEST(MSGPACK_TR1, simple_buffer_unordered_multimap) { for (unsigned int k = 0; k < kLoop; k++) { unordered_multimap val1; for (unsigned int i = 0; i < kElements; i++) { int i1 = rand(); val1.insert(make_pair(i1, rand())); val1.insert(make_pair(i1, rand())); } msgpack::sbuffer sbuf; msgpack::pack(sbuf, val1); msgpack::unpacked ret; msgpack::unpack(ret, sbuf.data(), sbuf.size()); unordered_multimap val2 = ret.get().as >(); vector > v1, v2; unordered_multimap::const_iterator it; for (it = val1.begin(); it != val1.end(); ++it) v1.push_back(make_pair(it->first, it->second)); for (it = val2.begin(); it != val2.end(); ++it) v2.push_back(make_pair(it->first, it->second)); EXPECT_EQ(val1.size(), val2.size()); EXPECT_EQ(v1.size(), v2.size()); sort(v1.begin(), v1.end()); sort(v2.begin(), v2.end()); EXPECT_TRUE(v1 == v2); } } #endif #ifdef MSGPACK_HAS_STD_UNORDERED_SET #include #include "msgpack/adaptor/tr1/unordered_set.hpp" TEST(MSGPACK_TR1, simple_buffer_unordered_set) { for (unsigned int k = 0; k < kLoop; k++) { unordered_set val1; for (unsigned int i = 0; i < kElements; i++) val1.insert(rand()); msgpack::sbuffer sbuf; msgpack::pack(sbuf, val1); msgpack::unpacked ret; msgpack::unpack(ret, sbuf.data(), sbuf.size()); unordered_set val2 = ret.get().as >(); EXPECT_EQ(val1.size(), val2.size()); unordered_set::const_iterator it; for (it = val1.begin(); it != val1.end(); ++it) EXPECT_TRUE(val2.find(*it) != val2.end()); } } TEST(MSGPACK_TR1, simple_buffer_unordered_multiset) { for (unsigned int k = 0; k < kLoop; k++) { unordered_multiset val1; for (unsigned int i = 0; i < kElements; i++) val1.insert(rand()); msgpack::sbuffer sbuf; msgpack::pack(sbuf, val1); msgpack::unpacked ret; msgpack::unpack(ret, sbuf.data(), sbuf.size()); unordered_multiset val2 = ret.get().as >(); vector v1, v2; unordered_multiset::const_iterator it; for (it = val1.begin(); it != val1.end(); ++it) v1.push_back(*it); for (it = val2.begin(); it != val2.end(); ++it) v2.push_back(*it); EXPECT_EQ(val1.size(), val2.size()); EXPECT_EQ(v1.size(), v2.size()); sort(v1.begin(), v1.end()); sort(v2.begin(), v2.end()); EXPECT_TRUE(v1 == v2); } } #endif