Re-designed user types dispatching mechanism.

msgpakc-c 0.5.9 or older uses ADL.
msgpack-c 1.0.x uses overloading with header files ordering.
msgpack-c 1.1.x uses functor with class template specialization.
This commit is contained in:
Takatoshi Kondo
2015-04-02 14:52:47 +09:00
parent 6ec09053b1
commit e8d3c8d6c5
74 changed files with 5646 additions and 11012 deletions

View File

@@ -19,7 +19,7 @@
#define MSGPACK_TYPE_UNORDERED_MAP_HPP
#include "msgpack/versioning.hpp"
#include "msgpack/object_fwd.hpp"
#include "msgpack/adaptor/adaptor_base.hpp"
#include "msgpack/adaptor/check_container_size.hpp"
#include <unordered_map>
@@ -28,115 +28,127 @@ namespace msgpack {
MSGPACK_API_VERSION_NAMESPACE(v1) {
template <typename K, typename V>
inline msgpack::object const& operator>> (msgpack::object const& o, std::unordered_map<K, V>& v)
{
if(o.type != msgpack::type::MAP) { throw msgpack::type_error(); }
msgpack::object_kv* p(o.via.map.ptr);
msgpack::object_kv* const pend(o.via.map.ptr + o.via.map.size);
std::unordered_map<K, V> tmp;
for(; p != pend; ++p) {
K key;
p->key.convert(key);
p->val.convert(tmp[key]);
}
tmp.swap(v);
return o;
}
template <typename Stream, typename K, typename V>
inline msgpack::packer<Stream>& operator<< (msgpack::packer<Stream>& o, const std::unordered_map<K,V>& v)
{
uint32_t size = checked_get_container_size(v.size());
o.pack_map(size);
for(typename std::unordered_map<K,V>::const_iterator it(v.begin()), it_end(v.end());
it != it_end; ++it) {
o.pack(it->first);
o.pack(it->second);
}
return o;
}
namespace adaptor {
template <typename K, typename V>
inline void operator<< (msgpack::object::with_zone& o, const std::unordered_map<K,V>& v)
{
o.type = msgpack::type::MAP;
if(v.empty()) {
o.via.map.ptr = nullptr;
o.via.map.size = 0;
} else {
struct convert<std::unordered_map<K, V>> {
msgpack::object const& operator()(msgpack::object const& o, std::unordered_map<K, V>& v) const {
if(o.type != msgpack::type::MAP) { throw msgpack::type_error(); }
msgpack::object_kv* p(o.via.map.ptr);
msgpack::object_kv* const pend(o.via.map.ptr + o.via.map.size);
std::unordered_map<K, V> tmp;
for(; p != pend; ++p) {
K key;
p->key.convert(key);
p->val.convert(tmp[key]);
}
tmp.swap(v);
return o;
}
};
template <typename K, typename V>
struct pack<std::unordered_map<K, V>> {
template <typename Stream>
msgpack::packer<Stream>& operator()(msgpack::packer<Stream>& o, const std::unordered_map<K,V>& v) const {
uint32_t size = checked_get_container_size(v.size());
msgpack::object_kv* p = static_cast<msgpack::object_kv*>(o.zone.allocate_align(sizeof(msgpack::object_kv)*size));
msgpack::object_kv* const pend = p + size;
o.via.map.ptr = p;
o.via.map.size = size;
typename std::unordered_map<K,V>::const_iterator it(v.begin());
do {
p->key = msgpack::object(it->first, o.zone);
p->val = msgpack::object(it->second, o.zone);
++p;
++it;
} while(p < pend);
o.pack_map(size);
for(typename std::unordered_map<K,V>::const_iterator it(v.begin()), it_end(v.end());
it != it_end; ++it) {
o.pack(it->first);
o.pack(it->second);
}
return o;
}
}
};
template <typename K, typename V>
struct object_with_zone<std::unordered_map<K, V>> {
void operator()(msgpack::object::with_zone& o, const std::unordered_map<K,V>& v) const {
o.type = msgpack::type::MAP;
if(v.empty()) {
o.via.map.ptr = nullptr;
o.via.map.size = 0;
} else {
uint32_t size = checked_get_container_size(v.size());
msgpack::object_kv* p = static_cast<msgpack::object_kv*>(o.zone.allocate_align(sizeof(msgpack::object_kv)*size));
msgpack::object_kv* const pend = p + size;
o.via.map.ptr = p;
o.via.map.size = size;
typename std::unordered_map<K,V>::const_iterator it(v.begin());
do {
p->key = msgpack::object(it->first, o.zone);
p->val = msgpack::object(it->second, o.zone);
++p;
++it;
} while(p < pend);
}
}
};
template <typename K, typename V>
inline msgpack::object const& operator>> (msgpack::object const& o, std::unordered_multimap<K, V>& v)
{
if(o.type != msgpack::type::MAP) { throw msgpack::type_error(); }
msgpack::object_kv* p(o.via.map.ptr);
msgpack::object_kv* const pend(o.via.map.ptr + o.via.map.size);
std::unordered_multimap<K, V> tmp;
for(; p != pend; ++p) {
std::pair<K, V> value;
p->key.convert(value.first);
p->val.convert(value.second);
tmp.insert(value);
struct convert<std::unordered_multimap<K, V>> {
msgpack::object const& operator()(msgpack::object const& o, std::unordered_multimap<K, V>& v) const {
if(o.type != msgpack::type::MAP) { throw msgpack::type_error(); }
msgpack::object_kv* p(o.via.map.ptr);
msgpack::object_kv* const pend(o.via.map.ptr + o.via.map.size);
std::unordered_multimap<K, V> tmp;
for(; p != pend; ++p) {
std::pair<K, V> value;
p->key.convert(value.first);
p->val.convert(value.second);
tmp.insert(value);
}
tmp.swap(v);
return o;
}
tmp.swap(v);
return o;
}
template <typename Stream, typename K, typename V>
inline msgpack::packer<Stream>& operator<< (msgpack::packer<Stream>& o, const std::unordered_multimap<K,V>& v)
{
uint32_t size = checked_get_container_size(v.size());
o.pack_map(size);
for(typename std::unordered_multimap<K,V>::const_iterator it(v.begin()), it_end(v.end());
it != it_end; ++it) {
o.pack(it->first);
o.pack(it->second);
}
return o;
}
};
template <typename K, typename V>
inline void operator<< (msgpack::object::with_zone& o, const std::unordered_multimap<K,V>& v)
{
o.type = msgpack::type::MAP;
if(v.empty()) {
o.via.map.ptr = nullptr;
o.via.map.size = 0;
} else {
struct pack<std::unordered_multimap<K, V>> {
template <typename Stream>
msgpack::packer<Stream>& operator()(msgpack::packer<Stream>& o, const std::unordered_multimap<K,V>& v) const {
uint32_t size = checked_get_container_size(v.size());
msgpack::object_kv* p = static_cast<msgpack::object_kv*>(o.zone.allocate_align(sizeof(msgpack::object_kv)*size));
msgpack::object_kv* const pend = p + size;
o.via.map.ptr = p;
o.via.map.size = size;
typename std::unordered_multimap<K,V>::const_iterator it(v.begin());
do {
p->key = msgpack::object(it->first, o.zone);
p->val = msgpack::object(it->second, o.zone);
++p;
++it;
} while(p < pend);
o.pack_map(size);
for(typename std::unordered_multimap<K,V>::const_iterator it(v.begin()), it_end(v.end());
it != it_end; ++it) {
o.pack(it->first);
o.pack(it->second);
}
return o;
}
}
};
} // MSGPACK_API_VERSION_NAMESPACE(v1)
template <typename K, typename V>
struct object_with_zone<std::unordered_multimap<K, V>> {
void operator()(msgpack::object::with_zone& o, const std::unordered_multimap<K,V>& v) const {
o.type = msgpack::type::MAP;
if(v.empty()) {
o.via.map.ptr = nullptr;
o.via.map.size = 0;
} else {
uint32_t size = checked_get_container_size(v.size());
msgpack::object_kv* p = static_cast<msgpack::object_kv*>(o.zone.allocate_align(sizeof(msgpack::object_kv)*size));
msgpack::object_kv* const pend = p + size;
o.via.map.ptr = p;
o.via.map.size = size;
typename std::unordered_multimap<K,V>::const_iterator it(v.begin());
do {
p->key = msgpack::object(it->first, o.zone);
p->val = msgpack::object(it->second, o.zone);
++p;
++it;
} while(p < pend);
}
}
};
} // namespace msgpack
} // namespace adaptor
} // MSGPACK_API_VERSION_NAMESPACE(v1)
} // namespace msgpack
#endif // MSGPACK_TYPE_UNORDERED_MAP_HPP