mirror of
https://github.com/zeromq/libzmq.git
synced 2025-01-06 00:31:13 +01:00
cc686f15f4
Solution: remove unused import and fix const placement.
555 lines
18 KiB
C++
555 lines
18 KiB
C++
/*
|
|
Copyright (c) 2018 Contributors as noted in the AUTHORS file
|
|
|
|
This file is part of libzmq, the ZeroMQ core engine in C++.
|
|
|
|
libzmq is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU Lesser General Public License (LGPL) as published
|
|
by the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
As a special exception, the Contributors give you permission to link
|
|
this library with independent modules to produce an executable,
|
|
regardless of the license terms of these independent modules, and to
|
|
copy and distribute the resulting executable under terms of your choice,
|
|
provided that you also meet, for each linked independent module, the
|
|
terms and conditions of the license of that module. An independent
|
|
module is a module which is not derived from or based on this library.
|
|
If you modify this library, you must extend this exception to your
|
|
version of the library.
|
|
|
|
libzmq is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "macros.hpp"
|
|
#include "err.hpp"
|
|
#include "radix_tree.hpp"
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
node::node (unsigned char *data) : data_ (data)
|
|
{
|
|
}
|
|
|
|
uint32_t node::refcount ()
|
|
{
|
|
uint32_t u32;
|
|
memcpy (&u32, data_, sizeof (u32));
|
|
return u32;
|
|
}
|
|
|
|
void node::set_refcount (uint32_t value)
|
|
{
|
|
memcpy (data_, &value, sizeof (value));
|
|
}
|
|
|
|
uint32_t node::prefix_length ()
|
|
{
|
|
uint32_t u32;
|
|
memcpy (&u32, data_ + sizeof (uint32_t), sizeof (u32));
|
|
return u32;
|
|
}
|
|
|
|
void node::set_prefix_length (uint32_t value)
|
|
{
|
|
memcpy (data_ + sizeof (value), &value, sizeof (value));
|
|
}
|
|
|
|
uint32_t node::edgecount ()
|
|
{
|
|
uint32_t u32;
|
|
memcpy (&u32, data_ + 2 * sizeof (uint32_t), sizeof (u32));
|
|
return u32;
|
|
}
|
|
|
|
void node::set_edgecount (uint32_t value)
|
|
{
|
|
memcpy (data_ + 2 * sizeof (value), &value, sizeof (value));
|
|
}
|
|
|
|
unsigned char *node::prefix ()
|
|
{
|
|
return data_ + 3 * sizeof (uint32_t);
|
|
}
|
|
|
|
void node::set_prefix (const unsigned char *bytes)
|
|
{
|
|
memcpy (prefix (), bytes, prefix_length ());
|
|
}
|
|
|
|
unsigned char *node::first_bytes ()
|
|
{
|
|
return prefix () + prefix_length ();
|
|
}
|
|
|
|
void node::set_first_bytes (const unsigned char *bytes)
|
|
{
|
|
memcpy (first_bytes (), bytes, edgecount ());
|
|
}
|
|
|
|
unsigned char node::first_byte_at (size_t i)
|
|
{
|
|
zmq_assert (i < edgecount ());
|
|
return first_bytes ()[i];
|
|
}
|
|
|
|
void node::set_first_byte_at (size_t i, unsigned char byte)
|
|
{
|
|
zmq_assert (i < edgecount ());
|
|
first_bytes ()[i] = byte;
|
|
}
|
|
|
|
unsigned char *node::node_ptrs ()
|
|
{
|
|
return prefix () + prefix_length () + edgecount ();
|
|
}
|
|
|
|
void node::set_node_ptrs (const unsigned char *ptrs)
|
|
{
|
|
memcpy (node_ptrs (), ptrs, edgecount () * sizeof (void *));
|
|
}
|
|
|
|
node node::node_at (size_t i)
|
|
{
|
|
zmq_assert (i < edgecount ());
|
|
|
|
unsigned char *data;
|
|
memcpy (&data, node_ptrs () + i * sizeof (void *), sizeof (data));
|
|
return node (data);
|
|
}
|
|
|
|
void node::set_node_at (size_t i, node n)
|
|
{
|
|
zmq_assert (i < edgecount ());
|
|
memcpy (node_ptrs () + i * sizeof (void *), &n.data_, sizeof (n.data_));
|
|
}
|
|
|
|
void node::set_edge_at (size_t i, unsigned char byte, node n)
|
|
{
|
|
set_first_byte_at (i, byte);
|
|
set_node_at (i, n);
|
|
}
|
|
|
|
bool node::operator== (node other) const
|
|
{
|
|
return data_ == other.data_;
|
|
}
|
|
|
|
bool node::operator!= (node other) const
|
|
{
|
|
return !(*this == other);
|
|
}
|
|
|
|
void node::resize (size_t prefix_length, size_t edgecount)
|
|
{
|
|
size_t sz =
|
|
3 * sizeof (uint32_t) + prefix_length + edgecount * (1 + sizeof (void *));
|
|
unsigned char *new_data =
|
|
static_cast<unsigned char *> (realloc (data_, sz));
|
|
zmq_assert (new_data);
|
|
data_ = new_data;
|
|
set_prefix_length (static_cast<uint32_t> (prefix_length));
|
|
set_edgecount (static_cast<uint32_t> (edgecount));
|
|
}
|
|
|
|
node make_node (size_t refs, size_t bytes, size_t edges)
|
|
{
|
|
size_t size = 3 * sizeof (uint32_t) + bytes + edges * (1 + sizeof (void *));
|
|
|
|
unsigned char *data = static_cast<unsigned char *> (malloc (size));
|
|
zmq_assert (data);
|
|
|
|
node n (data);
|
|
n.set_refcount (static_cast<uint32_t> (refs));
|
|
n.set_prefix_length (static_cast<uint32_t> (bytes));
|
|
n.set_edgecount (static_cast<uint32_t> (edges));
|
|
return n;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------
|
|
|
|
zmq::radix_tree::radix_tree () : root_ (make_node (0, 0, 0)), size_ (0)
|
|
{
|
|
}
|
|
|
|
static void free_nodes (node n)
|
|
{
|
|
for (size_t i = 0; i < n.edgecount (); ++i)
|
|
free_nodes (n.node_at (i));
|
|
free (n.data_);
|
|
}
|
|
|
|
zmq::radix_tree::~radix_tree ()
|
|
{
|
|
free_nodes (root_);
|
|
}
|
|
|
|
match_result::match_result (size_t i,
|
|
size_t j,
|
|
size_t edge_index,
|
|
size_t gp_edge_index,
|
|
node current,
|
|
node parent,
|
|
node grandparent) :
|
|
nkey (i),
|
|
nprefix (j),
|
|
edge_index (edge_index),
|
|
gp_edge_index (gp_edge_index),
|
|
current_node (current),
|
|
parent_node (parent),
|
|
grandparent_node (grandparent)
|
|
{
|
|
}
|
|
|
|
match_result zmq::radix_tree::match (const unsigned char *key,
|
|
size_t size,
|
|
bool check = false) const
|
|
{
|
|
zmq_assert (key);
|
|
|
|
size_t i = 0; // Number of characters matched in key.
|
|
size_t j = 0; // Number of characters matched in current node.
|
|
size_t edge_idx = 0; // Index of outgoing edge from the parent node.
|
|
size_t gp_edge_idx = 0; // Index of outgoing edge from grandparent.
|
|
node current_node = root_;
|
|
node parent_node = current_node;
|
|
node grandparent_node = current_node;
|
|
|
|
while (current_node.prefix_length () > 0 || current_node.edgecount () > 0) {
|
|
for (j = 0; j < current_node.prefix_length () && i < size; ++j, ++i) {
|
|
if (current_node.prefix ()[j] != key[i])
|
|
break;
|
|
}
|
|
|
|
// Even if a prefix of the key matches and we're doing a
|
|
// lookup, this means we've found a matching subscription.
|
|
if (check && j == current_node.prefix_length ()
|
|
&& current_node.refcount () > 0) {
|
|
i = size;
|
|
break;
|
|
}
|
|
|
|
// There was a mismatch or we've matched the whole key, so
|
|
// there's nothing more to do.
|
|
if (j != current_node.prefix_length () || i == size)
|
|
break;
|
|
|
|
// We need to match the rest of the key. Check if there's an
|
|
// outgoing edge from this node.
|
|
node next_node = current_node;
|
|
for (size_t k = 0; k < current_node.edgecount (); ++k) {
|
|
if (current_node.first_byte_at (k) == key[i]) {
|
|
gp_edge_idx = edge_idx;
|
|
edge_idx = k;
|
|
next_node = current_node.node_at (k);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (next_node == current_node)
|
|
break; // No outgoing edge.
|
|
grandparent_node = parent_node;
|
|
parent_node = current_node;
|
|
current_node = next_node;
|
|
}
|
|
|
|
return match_result (i, j, edge_idx, gp_edge_idx, current_node, parent_node,
|
|
grandparent_node);
|
|
}
|
|
|
|
bool zmq::radix_tree::add (const unsigned char *key, size_t size)
|
|
{
|
|
match_result result = match (key, size);
|
|
size_t i = result.nkey;
|
|
size_t j = result.nprefix;
|
|
size_t edge_idx = result.edge_index;
|
|
node current_node = result.current_node;
|
|
node parent_node = result.parent_node;
|
|
|
|
if (i != size) {
|
|
// Not all characters match, we might have to split the node.
|
|
if (i == 0 || j == current_node.prefix_length ()) {
|
|
// The mismatch is at one of the outgoing edges, so we
|
|
// create an edge from the current node to a new leaf node
|
|
// that has the rest of the key as the prefix.
|
|
node key_node = make_node (1, size - i, 0);
|
|
key_node.set_prefix (key + i);
|
|
|
|
// Reallocate for one more edge.
|
|
current_node.resize (current_node.prefix_length (),
|
|
current_node.edgecount () + 1);
|
|
|
|
// Make room for the new edge. We need to shift the chunk
|
|
// of node pointers one byte to the right. Since resize()
|
|
// increments the edgecount by 1, node_ptrs() tells us the
|
|
// destination address. The chunk of node pointers starts
|
|
// at one byte to the left of this destination.
|
|
//
|
|
// Since the regions can overlap, we use memmove.
|
|
memmove (current_node.node_ptrs (), current_node.node_ptrs () - 1,
|
|
(current_node.edgecount () - 1) * sizeof (void *));
|
|
|
|
// Add an edge to the new node.
|
|
current_node.set_edge_at (current_node.edgecount () - 1, key[i],
|
|
key_node);
|
|
|
|
// We need to update all pointers to the current node
|
|
// after the call to resize().
|
|
if (current_node.prefix_length () == 0)
|
|
root_.data_ = current_node.data_;
|
|
else
|
|
parent_node.set_node_at (edge_idx, current_node);
|
|
++size_;
|
|
return true;
|
|
}
|
|
|
|
// There was a mismatch, so we need to split this node.
|
|
//
|
|
// Create two nodes that will be reachable from the parent.
|
|
// One node will have the rest of the characters from the key,
|
|
// and the other node will have the rest of the characters
|
|
// from the current node's prefix.
|
|
node key_node = make_node (1, size - i, 0);
|
|
node split_node = make_node (current_node.refcount (),
|
|
current_node.prefix_length () - j,
|
|
current_node.edgecount ());
|
|
|
|
// Copy the prefix chunks to the new nodes.
|
|
key_node.set_prefix (key + i);
|
|
split_node.set_prefix (current_node.prefix () + j);
|
|
|
|
// Copy the current node's edges to the new node.
|
|
split_node.set_first_bytes (current_node.first_bytes ());
|
|
split_node.set_node_ptrs (current_node.node_ptrs ());
|
|
|
|
// Resize the current node to accommodate a prefix comprising
|
|
// the matched characters and 2 outgoing edges to the above
|
|
// nodes. Set the refcount to 0 since this node doesn't hold a
|
|
// key.
|
|
current_node.resize (j, 2);
|
|
current_node.set_refcount (0);
|
|
|
|
// Add links to the new nodes. We don't need to copy the
|
|
// prefix since resize() retains it in the current node.
|
|
current_node.set_edge_at (0, key_node.prefix ()[0], key_node);
|
|
current_node.set_edge_at (1, split_node.prefix ()[0], split_node);
|
|
|
|
++size_;
|
|
parent_node.set_node_at (edge_idx, current_node);
|
|
return true;
|
|
}
|
|
|
|
// All characters in the key match, but we still might need to split.
|
|
if (j != current_node.prefix_length ()) {
|
|
// All characters in the key match, but not all characters
|
|
// from the current node's prefix match.
|
|
|
|
// Create a node that contains the rest of the characters from
|
|
// the current node's prefix and the outgoing edges from the
|
|
// current node.
|
|
node split_node = make_node (current_node.refcount (),
|
|
current_node.prefix_length () - j,
|
|
current_node.edgecount ());
|
|
split_node.set_prefix (current_node.prefix () + j);
|
|
split_node.set_first_bytes (current_node.first_bytes ());
|
|
split_node.set_node_ptrs (current_node.node_ptrs ());
|
|
|
|
// Resize the current node to hold only the matched characters
|
|
// from its prefix and one edge to the new node.
|
|
current_node.resize (j, 1);
|
|
|
|
// Add an edge to the split node and set the refcount to 1
|
|
// since this key wasn't inserted earlier. We don't need to
|
|
// set the prefix because the first j bytes in the prefix are
|
|
// preserved by resize().
|
|
current_node.set_edge_at (0, split_node.prefix ()[0], split_node);
|
|
current_node.set_refcount (1);
|
|
|
|
++size_;
|
|
parent_node.set_node_at (edge_idx, current_node);
|
|
return true;
|
|
}
|
|
|
|
zmq_assert (i == size);
|
|
zmq_assert (j == current_node.prefix_length ());
|
|
|
|
++size_;
|
|
current_node.set_refcount (current_node.refcount () + 1);
|
|
return current_node.refcount () == 1;
|
|
}
|
|
|
|
bool zmq::radix_tree::rm (const unsigned char *key, size_t size)
|
|
{
|
|
match_result result = match (key, size);
|
|
size_t i = result.nkey;
|
|
size_t j = result.nprefix;
|
|
size_t edge_idx = result.edge_index;
|
|
size_t gp_edge_idx = result.gp_edge_index;
|
|
node current_node = result.current_node;
|
|
node parent_node = result.parent_node;
|
|
node grandparent_node = result.grandparent_node;
|
|
|
|
if (i != size || j != current_node.prefix_length ()
|
|
|| current_node.refcount () == 0)
|
|
return false;
|
|
|
|
current_node.set_refcount (current_node.refcount () - 1);
|
|
--size_;
|
|
if (current_node.refcount () > 0)
|
|
return false;
|
|
|
|
// Don't delete the root node.
|
|
if (current_node == root_)
|
|
return true;
|
|
|
|
size_t outgoing_edges = current_node.edgecount ();
|
|
if (outgoing_edges > 1)
|
|
// This node can't be merged with any other node, so there's
|
|
// nothing more to do.
|
|
return true;
|
|
|
|
if (outgoing_edges == 1) {
|
|
// Merge this node with the single child node.
|
|
node child = current_node.node_at (0);
|
|
|
|
// Make room for the child node's prefix and edges. We need to
|
|
// keep the old prefix length since resize() will overwrite
|
|
// it.
|
|
uint32_t old_prefix_length = current_node.prefix_length ();
|
|
current_node.resize (old_prefix_length + child.prefix_length (),
|
|
child.edgecount ());
|
|
|
|
// Append the child node's prefix to the current node.
|
|
memcpy (current_node.prefix () + old_prefix_length, child.prefix (),
|
|
child.prefix_length ());
|
|
|
|
// Copy the rest of child node's data to the current node.
|
|
current_node.set_first_bytes (child.first_bytes ());
|
|
current_node.set_node_ptrs (child.node_ptrs ());
|
|
current_node.set_refcount (child.refcount ());
|
|
|
|
free (child.data_);
|
|
parent_node.set_node_at (edge_idx, current_node);
|
|
return true;
|
|
}
|
|
|
|
if (parent_node.edgecount () == 2 && parent_node.refcount () == 0
|
|
&& parent_node != root_) {
|
|
// Removing this node leaves the parent with one child.
|
|
// If the parent doesn't hold a key or if it isn't the root,
|
|
// we can merge it with its single child node.
|
|
zmq_assert (edge_idx < 2);
|
|
node other_child = parent_node.node_at (!edge_idx);
|
|
|
|
// Make room for the child node's prefix and edges. We need to
|
|
// keep the old prefix length since resize() will overwrite
|
|
// it.
|
|
uint32_t old_prefix_length = parent_node.prefix_length ();
|
|
parent_node.resize (old_prefix_length + other_child.prefix_length (),
|
|
other_child.edgecount ());
|
|
|
|
// Append the child node's prefix to the current node.
|
|
memcpy (parent_node.prefix () + old_prefix_length,
|
|
other_child.prefix (), other_child.prefix_length ());
|
|
|
|
// Copy the rest of child node's data to the current node.
|
|
parent_node.set_first_bytes (other_child.first_bytes ());
|
|
parent_node.set_node_ptrs (other_child.node_ptrs ());
|
|
parent_node.set_refcount (other_child.refcount ());
|
|
|
|
free (current_node.data_);
|
|
free (other_child.data_);
|
|
grandparent_node.set_node_at (gp_edge_idx, parent_node);
|
|
return true;
|
|
}
|
|
|
|
// This is a leaf node that doesn't leave its parent with one
|
|
// outgoing edge. Remove the outgoing edge to this node from the
|
|
// parent.
|
|
zmq_assert (outgoing_edges == 0);
|
|
|
|
// Move the first byte and node pointer to the back of the byte
|
|
// and pointer chunks respectively.
|
|
size_t last_idx = parent_node.edgecount () - 1;
|
|
unsigned char last_byte = parent_node.first_byte_at (last_idx);
|
|
node last_ptr = parent_node.node_at (last_idx);
|
|
parent_node.set_edge_at (edge_idx, last_byte, last_ptr);
|
|
|
|
// Move the chunk of pointers one byte to the left, effectively
|
|
// deleting the last byte in the region of first bytes by
|
|
// overwriting it.
|
|
memmove (parent_node.node_ptrs () - 1, parent_node.node_ptrs (),
|
|
parent_node.edgecount () * sizeof (void *));
|
|
|
|
// Shrink the parent node to the new size, which "deletes" the
|
|
// last pointer in the chunk of node pointers.
|
|
parent_node.resize (parent_node.prefix_length (),
|
|
parent_node.edgecount () - 1);
|
|
|
|
// Nothing points to this node now, so we can reclaim it.
|
|
free (current_node.data_);
|
|
|
|
if (parent_node.prefix_length () == 0)
|
|
root_.data_ = parent_node.data_;
|
|
else
|
|
grandparent_node.set_node_at (gp_edge_idx, parent_node);
|
|
return true;
|
|
}
|
|
|
|
bool zmq::radix_tree::check (const unsigned char *key, size_t size)
|
|
{
|
|
if (root_.refcount () > 0)
|
|
return true;
|
|
|
|
match_result result = match (key, size, true);
|
|
return result.nkey == size
|
|
&& result.nprefix == result.current_node.prefix_length ()
|
|
&& result.current_node.refcount () > 0;
|
|
}
|
|
|
|
static void
|
|
visit_keys (node n,
|
|
unsigned char **buffer,
|
|
size_t buffer_size,
|
|
size_t maxbuffer_size,
|
|
void (*func) (unsigned char *data, size_t size, void *arg),
|
|
void *arg)
|
|
{
|
|
if (buffer_size >= maxbuffer_size) {
|
|
maxbuffer_size += 256;
|
|
*buffer =
|
|
static_cast<unsigned char *> (realloc (*buffer, maxbuffer_size));
|
|
zmq_assert (*buffer);
|
|
}
|
|
|
|
for (size_t i = 0; i < n.prefix_length (); ++i)
|
|
(*buffer)[buffer_size++] = n.prefix ()[i];
|
|
if (n.refcount () > 0)
|
|
func (*buffer, buffer_size, arg);
|
|
for (size_t i = 0; i < n.edgecount (); ++i)
|
|
visit_keys (n.node_at (i), buffer, buffer_size, maxbuffer_size, func,
|
|
arg);
|
|
buffer_size -= n.prefix_length ();
|
|
}
|
|
|
|
void zmq::radix_tree::apply (
|
|
void (*func) (unsigned char *data, size_t size, void *arg), void *arg)
|
|
{
|
|
unsigned char *buffer = NULL;
|
|
visit_keys (root_, &buffer, 0, 0, func, arg);
|
|
free (buffer);
|
|
}
|
|
|
|
size_t zmq::radix_tree::size () const
|
|
{
|
|
return size_;
|
|
}
|