libzmq/src/ctx.cpp
Abama cai 717d1980ee Problem: get_opt function read the options value maybe not thread safe
Solution: use scoped lock to prevent them from being modified during reading
2022-08-10 22:35:14 +08:00

901 lines
26 KiB
C++

/*
Copyright (c) 2007-2017 Contributors as noted in the AUTHORS file
This file is part of libzmq, the ZeroMQ core engine in C++.
libzmq is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
As a special exception, the Contributors give you permission to link
this library with independent modules to produce an executable,
regardless of the license terms of these independent modules, and to
copy and distribute the resulting executable under terms of your choice,
provided that you also meet, for each linked independent module, the
terms and conditions of the license of that module. An independent
module is a module which is not derived from or based on this library.
If you modify this library, you must extend this exception to your
version of the library.
libzmq is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "precompiled.hpp"
#include "macros.hpp"
#ifndef ZMQ_HAVE_WINDOWS
#include <unistd.h>
#endif
#include <limits>
#include <climits>
#include <new>
#include <sstream>
#include <string.h>
#include "ctx.hpp"
#include "socket_base.hpp"
#include "io_thread.hpp"
#include "reaper.hpp"
#include "pipe.hpp"
#include "err.hpp"
#include "msg.hpp"
#include "random.hpp"
#ifdef ZMQ_HAVE_VMCI
#include <vmci_sockets.h>
#endif
#ifdef ZMQ_USE_NSS
#include <nss.h>
#endif
#ifdef ZMQ_USE_GNUTLS
#include <gnutls/gnutls.h>
#endif
#define ZMQ_CTX_TAG_VALUE_GOOD 0xabadcafe
#define ZMQ_CTX_TAG_VALUE_BAD 0xdeadbeef
static int clipped_maxsocket (int max_requested_)
{
if (max_requested_ >= zmq::poller_t::max_fds ()
&& zmq::poller_t::max_fds () != -1)
// -1 because we need room for the reaper mailbox.
max_requested_ = zmq::poller_t::max_fds () - 1;
return max_requested_;
}
zmq::ctx_t::ctx_t () :
_tag (ZMQ_CTX_TAG_VALUE_GOOD),
_starting (true),
_terminating (false),
_reaper (NULL),
_max_sockets (clipped_maxsocket (ZMQ_MAX_SOCKETS_DFLT)),
_max_msgsz (INT_MAX),
_io_thread_count (ZMQ_IO_THREADS_DFLT),
_blocky (true),
_ipv6 (false),
_zero_copy (true)
{
#ifdef HAVE_FORK
_pid = getpid ();
#endif
#ifdef ZMQ_HAVE_VMCI
_vmci_fd = -1;
_vmci_family = -1;
#endif
// Initialise crypto library, if needed.
zmq::random_open ();
#ifdef ZMQ_USE_NSS
NSS_NoDB_Init (NULL);
#endif
#ifdef ZMQ_USE_GNUTLS
gnutls_global_init ();
#endif
}
bool zmq::ctx_t::check_tag () const
{
return _tag == ZMQ_CTX_TAG_VALUE_GOOD;
}
zmq::ctx_t::~ctx_t ()
{
// Check that there are no remaining _sockets.
zmq_assert (_sockets.empty ());
// Ask I/O threads to terminate. If stop signal wasn't sent to I/O
// thread subsequent invocation of destructor would hang-up.
const io_threads_t::size_type io_threads_size = _io_threads.size ();
for (io_threads_t::size_type i = 0; i != io_threads_size; i++) {
_io_threads[i]->stop ();
}
// Wait till I/O threads actually terminate.
for (io_threads_t::size_type i = 0; i != io_threads_size; i++) {
LIBZMQ_DELETE (_io_threads[i]);
}
// Deallocate the reaper thread object.
LIBZMQ_DELETE (_reaper);
// The mailboxes in _slots themselves were deallocated with their
// corresponding io_thread/socket objects.
// De-initialise crypto library, if needed.
zmq::random_close ();
#ifdef ZMQ_USE_NSS
NSS_Shutdown ();
#endif
#ifdef ZMQ_USE_GNUTLS
gnutls_global_deinit ();
#endif
// Remove the tag, so that the object is considered dead.
_tag = ZMQ_CTX_TAG_VALUE_BAD;
}
bool zmq::ctx_t::valid () const
{
return _term_mailbox.valid ();
}
int zmq::ctx_t::terminate ()
{
_slot_sync.lock ();
const bool save_terminating = _terminating;
_terminating = false;
// Connect up any pending inproc connections, otherwise we will hang
pending_connections_t copy = _pending_connections;
for (pending_connections_t::iterator p = copy.begin (), end = copy.end ();
p != end; ++p) {
zmq::socket_base_t *s = create_socket (ZMQ_PAIR);
// create_socket might fail eg: out of memory/sockets limit reached
zmq_assert (s);
s->bind (p->first.c_str ());
s->close ();
}
_terminating = save_terminating;
if (!_starting) {
#ifdef HAVE_FORK
if (_pid != getpid ()) {
// we are a forked child process. Close all file descriptors
// inherited from the parent.
for (sockets_t::size_type i = 0, size = _sockets.size (); i != size;
i++) {
_sockets[i]->get_mailbox ()->forked ();
}
_term_mailbox.forked ();
}
#endif
// Check whether termination was already underway, but interrupted and now
// restarted.
const bool restarted = _terminating;
_terminating = true;
// First attempt to terminate the context.
if (!restarted) {
// First send stop command to sockets so that any blocking calls
// can be interrupted. If there are no sockets we can ask reaper
// thread to stop.
for (sockets_t::size_type i = 0, size = _sockets.size (); i != size;
i++) {
_sockets[i]->stop ();
}
if (_sockets.empty ())
_reaper->stop ();
}
_slot_sync.unlock ();
// Wait till reaper thread closes all the sockets.
command_t cmd;
const int rc = _term_mailbox.recv (&cmd, -1);
if (rc == -1 && errno == EINTR)
return -1;
errno_assert (rc == 0);
zmq_assert (cmd.type == command_t::done);
_slot_sync.lock ();
zmq_assert (_sockets.empty ());
}
_slot_sync.unlock ();
#ifdef ZMQ_HAVE_VMCI
_vmci_sync.lock ();
VMCISock_ReleaseAFValueFd (_vmci_fd);
_vmci_family = -1;
_vmci_fd = -1;
_vmci_sync.unlock ();
#endif
// Deallocate the resources.
delete this;
return 0;
}
int zmq::ctx_t::shutdown ()
{
scoped_lock_t locker (_slot_sync);
if (!_terminating) {
_terminating = true;
if (!_starting) {
// Send stop command to sockets so that any blocking calls
// can be interrupted. If there are no sockets we can ask reaper
// thread to stop.
for (sockets_t::size_type i = 0, size = _sockets.size (); i != size;
i++) {
_sockets[i]->stop ();
}
if (_sockets.empty ())
_reaper->stop ();
}
}
return 0;
}
int zmq::ctx_t::set (int option_, const void *optval_, size_t optvallen_)
{
const bool is_int = (optvallen_ == sizeof (int));
int value = 0;
if (is_int)
memcpy (&value, optval_, sizeof (int));
switch (option_) {
case ZMQ_MAX_SOCKETS:
if (is_int && value >= 1 && value == clipped_maxsocket (value)) {
scoped_lock_t locker (_opt_sync);
_max_sockets = value;
return 0;
}
break;
case ZMQ_IO_THREADS:
if (is_int && value >= 0) {
scoped_lock_t locker (_opt_sync);
_io_thread_count = value;
return 0;
}
break;
case ZMQ_IPV6:
if (is_int && value >= 0) {
scoped_lock_t locker (_opt_sync);
_ipv6 = (value != 0);
return 0;
}
break;
case ZMQ_BLOCKY:
if (is_int && value >= 0) {
scoped_lock_t locker (_opt_sync);
_blocky = (value != 0);
return 0;
}
break;
case ZMQ_MAX_MSGSZ:
if (is_int && value >= 0) {
scoped_lock_t locker (_opt_sync);
_max_msgsz = value < INT_MAX ? value : INT_MAX;
return 0;
}
break;
case ZMQ_ZERO_COPY_RECV:
if (is_int && value >= 0) {
scoped_lock_t locker (_opt_sync);
_zero_copy = (value != 0);
return 0;
}
break;
default: {
return thread_ctx_t::set (option_, optval_, optvallen_);
}
}
errno = EINVAL;
return -1;
}
int zmq::ctx_t::get (int option_, void *optval_, const size_t *optvallen_)
{
const bool is_int = (*optvallen_ == sizeof (int));
int *value = static_cast<int *> (optval_);
switch (option_) {
case ZMQ_MAX_SOCKETS:
if (is_int) {
scoped_lock_t locker (_opt_sync);
*value = _max_sockets;
return 0;
}
break;
case ZMQ_SOCKET_LIMIT:
if (is_int) {
*value = clipped_maxsocket (65535);
return 0;
}
break;
case ZMQ_IO_THREADS:
if (is_int) {
scoped_lock_t locker (_opt_sync);
*value = _io_thread_count;
return 0;
}
break;
case ZMQ_IPV6:
if (is_int) {
scoped_lock_t locker (_opt_sync);
*value = _ipv6;
return 0;
}
break;
case ZMQ_BLOCKY:
if (is_int) {
scoped_lock_t locker (_opt_sync);
*value = _blocky;
return 0;
}
break;
case ZMQ_MAX_MSGSZ:
if (is_int) {
scoped_lock_t locker (_opt_sync);
*value = _max_msgsz;
return 0;
}
break;
case ZMQ_MSG_T_SIZE:
if (is_int) {
scoped_lock_t locker (_opt_sync);
*value = sizeof (zmq_msg_t);
return 0;
}
break;
case ZMQ_ZERO_COPY_RECV:
if (is_int) {
scoped_lock_t locker (_opt_sync);
*value = _zero_copy;
return 0;
}
break;
default: {
return thread_ctx_t::get (option_, optval_, optvallen_);
}
}
errno = EINVAL;
return -1;
}
int zmq::ctx_t::get (int option_)
{
int optval = 0;
size_t optvallen = sizeof (int);
if (get (option_, &optval, &optvallen) == 0)
return optval;
errno = EINVAL;
return -1;
}
bool zmq::ctx_t::start ()
{
// Initialise the array of mailboxes. Additional two slots are for
// zmq_ctx_term thread and reaper thread.
_opt_sync.lock ();
const int term_and_reaper_threads_count = 2;
const int mazmq = _max_sockets;
const int ios = _io_thread_count;
_opt_sync.unlock ();
const int slot_count = mazmq + ios + term_and_reaper_threads_count;
try {
_slots.reserve (slot_count);
_empty_slots.reserve (slot_count - term_and_reaper_threads_count);
}
catch (const std::bad_alloc &) {
errno = ENOMEM;
return false;
}
_slots.resize (term_and_reaper_threads_count);
// Initialise the infrastructure for zmq_ctx_term thread.
_slots[term_tid] = &_term_mailbox;
// Create the reaper thread.
_reaper = new (std::nothrow) reaper_t (this, reaper_tid);
if (!_reaper) {
errno = ENOMEM;
goto fail_cleanup_slots;
}
if (!_reaper->get_mailbox ()->valid ())
goto fail_cleanup_reaper;
_slots[reaper_tid] = _reaper->get_mailbox ();
_reaper->start ();
// Create I/O thread objects and launch them.
_slots.resize (slot_count, NULL);
for (int i = term_and_reaper_threads_count;
i != ios + term_and_reaper_threads_count; i++) {
io_thread_t *io_thread = new (std::nothrow) io_thread_t (this, i);
if (!io_thread) {
errno = ENOMEM;
goto fail_cleanup_reaper;
}
if (!io_thread->get_mailbox ()->valid ()) {
delete io_thread;
goto fail_cleanup_reaper;
}
_io_threads.push_back (io_thread);
_slots[i] = io_thread->get_mailbox ();
io_thread->start ();
}
// In the unused part of the slot array, create a list of empty slots.
for (int32_t i = static_cast<int32_t> (_slots.size ()) - 1;
i >= static_cast<int32_t> (ios) + term_and_reaper_threads_count; i--) {
_empty_slots.push_back (i);
}
_starting = false;
return true;
fail_cleanup_reaper:
_reaper->stop ();
delete _reaper;
_reaper = NULL;
fail_cleanup_slots:
_slots.clear ();
return false;
}
zmq::socket_base_t *zmq::ctx_t::create_socket (int type_)
{
scoped_lock_t locker (_slot_sync);
// Once zmq_ctx_term() or zmq_ctx_shutdown() was called, we can't create
// new sockets.
if (_terminating) {
errno = ETERM;
return NULL;
}
if (unlikely (_starting)) {
if (!start ())
return NULL;
}
// If max_sockets limit was reached, return error.
if (_empty_slots.empty ()) {
errno = EMFILE;
return NULL;
}
// Choose a slot for the socket.
const uint32_t slot = _empty_slots.back ();
_empty_slots.pop_back ();
// Generate new unique socket ID.
const int sid = (static_cast<int> (max_socket_id.add (1))) + 1;
// Create the socket and register its mailbox.
socket_base_t *s = socket_base_t::create (type_, this, slot, sid);
if (!s) {
_empty_slots.push_back (slot);
return NULL;
}
_sockets.push_back (s);
_slots[slot] = s->get_mailbox ();
return s;
}
void zmq::ctx_t::destroy_socket (class socket_base_t *socket_)
{
scoped_lock_t locker (_slot_sync);
// Free the associated thread slot.
const uint32_t tid = socket_->get_tid ();
_empty_slots.push_back (tid);
_slots[tid] = NULL;
// Remove the socket from the list of sockets.
_sockets.erase (socket_);
// If zmq_ctx_term() was already called and there are no more socket
// we can ask reaper thread to terminate.
if (_terminating && _sockets.empty ())
_reaper->stop ();
}
zmq::object_t *zmq::ctx_t::get_reaper () const
{
return _reaper;
}
zmq::thread_ctx_t::thread_ctx_t () :
_thread_priority (ZMQ_THREAD_PRIORITY_DFLT),
_thread_sched_policy (ZMQ_THREAD_SCHED_POLICY_DFLT)
{
}
void zmq::thread_ctx_t::start_thread (thread_t &thread_,
thread_fn *tfn_,
void *arg_,
const char *name_) const
{
thread_.setSchedulingParameters (_thread_priority, _thread_sched_policy,
_thread_affinity_cpus);
char namebuf[16] = "";
snprintf (namebuf, sizeof (namebuf), "%s%sZMQbg%s%s",
_thread_name_prefix.empty () ? "" : _thread_name_prefix.c_str (),
_thread_name_prefix.empty () ? "" : "/", name_ ? "/" : "",
name_ ? name_ : "");
thread_.start (tfn_, arg_, namebuf);
}
int zmq::thread_ctx_t::set (int option_, const void *optval_, size_t optvallen_)
{
const bool is_int = (optvallen_ == sizeof (int));
int value = 0;
if (is_int)
memcpy (&value, optval_, sizeof (int));
switch (option_) {
case ZMQ_THREAD_SCHED_POLICY:
if (is_int && value >= 0) {
scoped_lock_t locker (_opt_sync);
_thread_sched_policy = value;
return 0;
}
break;
case ZMQ_THREAD_AFFINITY_CPU_ADD:
if (is_int && value >= 0) {
scoped_lock_t locker (_opt_sync);
_thread_affinity_cpus.insert (value);
return 0;
}
break;
case ZMQ_THREAD_AFFINITY_CPU_REMOVE:
if (is_int && value >= 0) {
scoped_lock_t locker (_opt_sync);
if (0 == _thread_affinity_cpus.erase (value)) {
errno = EINVAL;
return -1;
}
return 0;
}
break;
case ZMQ_THREAD_PRIORITY:
if (is_int && value >= 0) {
scoped_lock_t locker (_opt_sync);
_thread_priority = value;
return 0;
}
break;
case ZMQ_THREAD_NAME_PREFIX:
// start_thread() allows max 16 chars for thread name
if (is_int) {
std::ostringstream s;
s << value;
scoped_lock_t locker (_opt_sync);
_thread_name_prefix = s.str ();
return 0;
} else if (optvallen_ > 0 && optvallen_ <= 16) {
scoped_lock_t locker (_opt_sync);
_thread_name_prefix.assign (static_cast<const char *> (optval_),
optvallen_);
return 0;
}
break;
}
errno = EINVAL;
return -1;
}
int zmq::thread_ctx_t::get (int option_,
void *optval_,
const size_t *optvallen_)
{
const bool is_int = (*optvallen_ == sizeof (int));
int *value = static_cast<int *> (optval_);
switch (option_) {
case ZMQ_THREAD_SCHED_POLICY:
if (is_int) {
scoped_lock_t locker (_opt_sync);
*value = _thread_sched_policy;
return 0;
}
break;
case ZMQ_THREAD_NAME_PREFIX:
if (is_int) {
scoped_lock_t locker (_opt_sync);
*value = atoi (_thread_name_prefix.c_str ());
return 0;
} else if (*optvallen_ >= _thread_name_prefix.size ()) {
scoped_lock_t locker (_opt_sync);
memcpy (optval_, _thread_name_prefix.data (),
_thread_name_prefix.size ());
return 0;
}
break;
}
errno = EINVAL;
return -1;
}
void zmq::ctx_t::send_command (uint32_t tid_, const command_t &command_)
{
_slots[tid_]->send (command_);
}
zmq::io_thread_t *zmq::ctx_t::choose_io_thread (uint64_t affinity_)
{
if (_io_threads.empty ())
return NULL;
// Find the I/O thread with minimum load.
int min_load = -1;
io_thread_t *selected_io_thread = NULL;
for (io_threads_t::size_type i = 0, size = _io_threads.size (); i != size;
i++) {
if (!affinity_ || (affinity_ & (uint64_t (1) << i))) {
const int load = _io_threads[i]->get_load ();
if (selected_io_thread == NULL || load < min_load) {
min_load = load;
selected_io_thread = _io_threads[i];
}
}
}
return selected_io_thread;
}
int zmq::ctx_t::register_endpoint (const char *addr_,
const endpoint_t &endpoint_)
{
scoped_lock_t locker (_endpoints_sync);
const bool inserted =
_endpoints.ZMQ_MAP_INSERT_OR_EMPLACE (std::string (addr_), endpoint_)
.second;
if (!inserted) {
errno = EADDRINUSE;
return -1;
}
return 0;
}
int zmq::ctx_t::unregister_endpoint (const std::string &addr_,
const socket_base_t *const socket_)
{
scoped_lock_t locker (_endpoints_sync);
const endpoints_t::iterator it = _endpoints.find (addr_);
if (it == _endpoints.end () || it->second.socket != socket_) {
errno = ENOENT;
return -1;
}
// Remove endpoint.
_endpoints.erase (it);
return 0;
}
void zmq::ctx_t::unregister_endpoints (const socket_base_t *const socket_)
{
scoped_lock_t locker (_endpoints_sync);
for (endpoints_t::iterator it = _endpoints.begin (),
end = _endpoints.end ();
it != end;) {
if (it->second.socket == socket_)
#if __cplusplus >= 201103L || (defined _MSC_VER && _MSC_VER >= 1700)
it = _endpoints.erase (it);
#else
_endpoints.erase (it++);
#endif
else
++it;
}
}
zmq::endpoint_t zmq::ctx_t::find_endpoint (const char *addr_)
{
scoped_lock_t locker (_endpoints_sync);
endpoints_t::iterator it = _endpoints.find (addr_);
if (it == _endpoints.end ()) {
errno = ECONNREFUSED;
endpoint_t empty = {NULL, options_t ()};
return empty;
}
endpoint_t endpoint = it->second;
// Increment the command sequence number of the peer so that it won't
// get deallocated until "bind" command is issued by the caller.
// The subsequent 'bind' has to be called with inc_seqnum parameter
// set to false, so that the seqnum isn't incremented twice.
endpoint.socket->inc_seqnum ();
return endpoint;
}
void zmq::ctx_t::pend_connection (const std::string &addr_,
const endpoint_t &endpoint_,
pipe_t **pipes_)
{
scoped_lock_t locker (_endpoints_sync);
const pending_connection_t pending_connection = {endpoint_, pipes_[0],
pipes_[1]};
const endpoints_t::iterator it = _endpoints.find (addr_);
if (it == _endpoints.end ()) {
// Still no bind.
endpoint_.socket->inc_seqnum ();
_pending_connections.ZMQ_MAP_INSERT_OR_EMPLACE (addr_,
pending_connection);
} else {
// Bind has happened in the mean time, connect directly
connect_inproc_sockets (it->second.socket, it->second.options,
pending_connection, connect_side);
}
}
void zmq::ctx_t::connect_pending (const char *addr_,
zmq::socket_base_t *bind_socket_)
{
scoped_lock_t locker (_endpoints_sync);
const std::pair<pending_connections_t::iterator,
pending_connections_t::iterator>
pending = _pending_connections.equal_range (addr_);
for (pending_connections_t::iterator p = pending.first; p != pending.second;
++p)
connect_inproc_sockets (bind_socket_, _endpoints[addr_].options,
p->second, bind_side);
_pending_connections.erase (pending.first, pending.second);
}
void zmq::ctx_t::connect_inproc_sockets (
zmq::socket_base_t *bind_socket_,
const options_t &bind_options_,
const pending_connection_t &pending_connection_,
side side_)
{
bind_socket_->inc_seqnum ();
pending_connection_.bind_pipe->set_tid (bind_socket_->get_tid ());
if (!bind_options_.recv_routing_id) {
msg_t msg;
const bool ok = pending_connection_.bind_pipe->read (&msg);
zmq_assert (ok);
const int rc = msg.close ();
errno_assert (rc == 0);
}
if (!get_effective_conflate_option (pending_connection_.endpoint.options)) {
pending_connection_.connect_pipe->set_hwms_boost (bind_options_.sndhwm,
bind_options_.rcvhwm);
pending_connection_.bind_pipe->set_hwms_boost (
pending_connection_.endpoint.options.sndhwm,
pending_connection_.endpoint.options.rcvhwm);
pending_connection_.connect_pipe->set_hwms (
pending_connection_.endpoint.options.rcvhwm,
pending_connection_.endpoint.options.sndhwm);
pending_connection_.bind_pipe->set_hwms (bind_options_.rcvhwm,
bind_options_.sndhwm);
} else {
pending_connection_.connect_pipe->set_hwms (-1, -1);
pending_connection_.bind_pipe->set_hwms (-1, -1);
}
#ifdef ZMQ_BUILD_DRAFT_API
if (bind_options_.can_recv_disconnect_msg
&& !bind_options_.disconnect_msg.empty ())
pending_connection_.connect_pipe->set_disconnect_msg (
bind_options_.disconnect_msg);
#endif
if (side_ == bind_side) {
command_t cmd;
cmd.type = command_t::bind;
cmd.args.bind.pipe = pending_connection_.bind_pipe;
bind_socket_->process_command (cmd);
bind_socket_->send_inproc_connected (
pending_connection_.endpoint.socket);
} else
pending_connection_.connect_pipe->send_bind (
bind_socket_, pending_connection_.bind_pipe, false);
// When a ctx is terminated all pending inproc connection will be
// connected, but the socket will already be closed and the pipe will be
// in waiting_for_delimiter state, which means no more writes can be done
// and the routing id write fails and causes an assert. Check if the socket
// is open before sending.
if (pending_connection_.endpoint.options.recv_routing_id
&& pending_connection_.endpoint.socket->check_tag ()) {
send_routing_id (pending_connection_.bind_pipe, bind_options_);
}
#ifdef ZMQ_BUILD_DRAFT_API
// If set, send the hello msg of the bind socket to the pending connection.
if (bind_options_.can_send_hello_msg
&& bind_options_.hello_msg.size () > 0) {
send_hello_msg (pending_connection_.bind_pipe, bind_options_);
}
#endif
}
#ifdef ZMQ_HAVE_VMCI
int zmq::ctx_t::get_vmci_socket_family ()
{
zmq::scoped_lock_t locker (_vmci_sync);
if (_vmci_fd == -1) {
_vmci_family = VMCISock_GetAFValueFd (&_vmci_fd);
if (_vmci_fd != -1) {
#ifdef FD_CLOEXEC
int rc = fcntl (_vmci_fd, F_SETFD, FD_CLOEXEC);
errno_assert (rc != -1);
#endif
}
}
return _vmci_family;
}
#endif
// The last used socket ID, or 0 if no socket was used so far. Note that this
// is a global variable. Thus, even sockets created in different contexts have
// unique IDs.
zmq::atomic_counter_t zmq::ctx_t::max_socket_id;