libzmq/tests/test_security_plain.cpp
sigiesec 9e7507b38b Problem: term "identity" is confusing
Solution: replace by "routing id"
2017-09-19 17:53:44 +02:00

213 lines
6.9 KiB
C++

/*
Copyright (c) 2007-2017 Contributors as noted in the AUTHORS file
This file is part of libzmq, the ZeroMQ core engine in C++.
libzmq is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
As a special exception, the Contributors give you permission to link
this library with independent modules to produce an executable,
regardless of the license terms of these independent modules, and to
copy and distribute the resulting executable under terms of your choice,
provided that you also meet, for each linked independent module, the
terms and conditions of the license of that module. An independent
module is a module which is not derived from or based on this library.
If you modify this library, you must extend this exception to your
version of the library.
libzmq is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "testutil.hpp"
#if defined (ZMQ_HAVE_WINDOWS)
# include <winsock2.h>
# include <ws2tcpip.h>
# include <stdexcept>
# define close closesocket
#else
# include <sys/socket.h>
# include <netinet/in.h>
# include <arpa/inet.h>
# include <unistd.h>
#endif
static void
zap_handler (void *ctx)
{
// Create and bind ZAP socket
void *zap = zmq_socket (ctx, ZMQ_REP);
assert (zap);
int rc = zmq_bind (zap, "inproc://zeromq.zap.01");
assert (rc == 0);
// Process ZAP requests forever
while (true) {
char *version = s_recv (zap);
if (!version)
break; // Terminating
char *sequence = s_recv (zap);
char *domain = s_recv (zap);
char *address = s_recv (zap);
char *identity = s_recv (zap);
char *mechanism = s_recv (zap);
char *username = s_recv (zap);
char *password = s_recv (zap);
assert (streq (version, "1.0"));
assert (streq (mechanism, "PLAIN"));
assert (streq (identity, "IDENT"));
s_sendmore (zap, version);
s_sendmore (zap, sequence);
if (streq (username, "admin")
&& streq (password, "password")) {
s_sendmore (zap, "200");
s_sendmore (zap, "OK");
s_sendmore (zap, "anonymous");
s_send (zap, "");
}
else {
s_sendmore (zap, "400");
s_sendmore (zap, "Invalid username or password");
s_sendmore (zap, "");
s_send (zap, "");
}
free (version);
free (sequence);
free (domain);
free (address);
free (identity);
free (mechanism);
free (username);
free (password);
}
rc = zmq_close (zap);
assert (rc == 0);
}
int main (void)
{
setup_test_environment();
size_t len = MAX_SOCKET_STRING;
char my_endpoint[MAX_SOCKET_STRING];
void *ctx = zmq_ctx_new ();
assert (ctx);
// Spawn ZAP handler
void *zap_thread = zmq_threadstart (&zap_handler, ctx);
// Server socket will accept connections
void *server = zmq_socket (ctx, ZMQ_DEALER);
assert (server);
int rc = zmq_setsockopt (server, ZMQ_ROUTING_ID, "IDENT", 6);
const char domain[] = "test";
assert (rc == 0);
rc = zmq_setsockopt (server, ZMQ_ZAP_DOMAIN, domain, strlen (domain));
assert (rc == 0);
int as_server = 1;
rc = zmq_setsockopt (server, ZMQ_PLAIN_SERVER, &as_server, sizeof (int));
assert (rc == 0);
rc = zmq_bind (server, "tcp://127.0.0.1:*");
assert (rc == 0);
rc = zmq_getsockopt (server, ZMQ_LAST_ENDPOINT, my_endpoint, &len);
assert (rc == 0);
char username [256];
char password [256];
// Check PLAIN security with correct username/password
void *client = zmq_socket (ctx, ZMQ_DEALER);
assert (client);
strcpy (username, "admin");
rc = zmq_setsockopt (client, ZMQ_PLAIN_USERNAME, username, strlen (username));
assert (rc == 0);
strcpy (password, "password");
rc = zmq_setsockopt (client, ZMQ_PLAIN_PASSWORD, password, strlen (password));
assert (rc == 0);
rc = zmq_connect (client, my_endpoint);
assert (rc == 0);
bounce (server, client);
rc = zmq_close (client);
assert (rc == 0);
// Check PLAIN security with badly configured client (as_server)
// This will be caught by the plain_server class, not passed to ZAP
client = zmq_socket (ctx, ZMQ_DEALER);
assert (client);
as_server = 1;
rc = zmq_setsockopt(client, ZMQ_ZAP_DOMAIN, domain, strlen (domain));
assert (rc == 0);
rc = zmq_setsockopt (client, ZMQ_PLAIN_SERVER, &as_server, sizeof (int));
assert (rc == 0);
rc = zmq_connect (client, my_endpoint);
assert (rc == 0);
expect_bounce_fail (server, client);
close_zero_linger (client);
// Check PLAIN security -- failed authentication
client = zmq_socket (ctx, ZMQ_DEALER);
assert (client);
strcpy (username, "wronguser");
strcpy (password, "wrongpass");
rc = zmq_setsockopt (client, ZMQ_PLAIN_USERNAME, username, strlen (username));
assert (rc == 0);
rc = zmq_setsockopt (client, ZMQ_PLAIN_PASSWORD, password, strlen (password));
assert (rc == 0);
rc = zmq_connect (client, my_endpoint);
assert (rc == 0);
expect_bounce_fail (server, client);
close_zero_linger (client);
// Unauthenticated messages from a vanilla socket shouldn't be received
struct sockaddr_in ip4addr;
int s;
unsigned short int port;
rc = sscanf(my_endpoint, "tcp://127.0.0.1:%hu", &port);
assert (rc == 1);
ip4addr.sin_family = AF_INET;
ip4addr.sin_port = htons (port);
#if defined (ZMQ_HAVE_WINDOWS) && (_WIN32_WINNT < 0x0600)
ip4addr.sin_addr.s_addr = inet_addr ("127.0.0.1");
#else
inet_pton (AF_INET, "127.0.0.1", &ip4addr.sin_addr);
#endif
s = socket (AF_INET, SOCK_STREAM, IPPROTO_TCP);
rc = connect (s, (struct sockaddr*) &ip4addr, sizeof (ip4addr));
assert (rc > -1);
// send anonymous ZMTP/1.0 greeting
send (s, "\x01\x00", 2, 0);
// send sneaky message that shouldn't be received
send (s, "\x08\x00sneaky\0", 9, 0);
int timeout = 250;
zmq_setsockopt (server, ZMQ_RCVTIMEO, &timeout, sizeof (timeout));
char *buf = s_recv (server);
if (buf != NULL) {
printf ("Received unauthenticated message: %s\n", buf);
assert (buf == NULL);
}
close (s);
// Shutdown
rc = zmq_close (server);
assert (rc == 0);
rc = zmq_ctx_term (ctx);
assert (rc == 0);
// Wait until ZAP handler terminates
zmq_threadclose (zap_thread);
return 0;
}