libzmq/tests/test_security_null.cpp
Pieter Hintjens 6725c4644f Added ZMQ_ZAP_DOMAIN socket option
* This is passed to the ZAP handler in the 'domain' field

* If not set, or empty, then NULL security does not call the ZAP handler

* This resolves the phantom ZAP request syndrome seen with sockets where
  security was never intended (e.g. in test cases)

* This means if you install a ZAP handler, it will not get any requests
  for new connections until you take some explicit action, which can be
  setting a username/password for PLAIN, a key for CURVE, or the domain
  for NULL.
2013-09-09 20:40:34 +02:00

111 lines
3.1 KiB
C++

/*
Copyright (c) 2007-2013 Contributors as noted in the AUTHORS file
This file is part of 0MQ.
0MQ is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
0MQ is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "../include/zmq_utils.h"
#include <string.h>
#include <stdlib.h>
#include "testutil.hpp"
static void
zap_handler (void *ctx)
{
// Create and bind ZAP socket
void *zap = zmq_socket (ctx, ZMQ_REP);
assert (zap);
int rc = zmq_bind (zap, "inproc://zeromq.zap.01");
assert (rc == 0);
// Process ZAP requests forever
while (true) {
char *version = s_recv (zap);
if (!version)
break; // Terminating
char *sequence = s_recv (zap);
char *domain = s_recv (zap);
char *address = s_recv (zap);
char *identity = s_recv (zap);
char *mechanism = s_recv (zap);
printf ("domain=%s address=%s identity=%s mechanism=%s\n",
domain, address, identity, mechanism);
assert (streq (version, "1.0"));
assert (streq (mechanism, "NULL"));
assert (streq (identity, "IDENT"));
s_sendmore (zap, version);
s_sendmore (zap, sequence);
s_sendmore (zap, "200");
s_sendmore (zap, "OK");
s_sendmore (zap, "anonymous");
s_send (zap, "");
free (version);
free (sequence);
free (domain);
free (address);
free (identity);
free (mechanism);
}
rc = zmq_close (zap);
assert (rc == 0);
}
int main (void)
{
setup_test_environment();
void *ctx = zmq_ctx_new ();
assert (ctx);
// Spawn ZAP handler
void *zap_thread = zmq_threadstart (&zap_handler, ctx);
// Server socket will accept connections
void *server = zmq_socket (ctx, ZMQ_DEALER);
assert (server);
int rc = zmq_setsockopt (server, ZMQ_IDENTITY, "IDENT", 6);
assert (rc == 0);
rc = zmq_setsockopt (server, ZMQ_ZAP_DOMAIN, "TEST", 4);
assert (rc == 0);
rc = zmq_bind (server, "tcp://*:9999");
assert (rc == 0);
// Client socket that will try to connect to server
void *client = zmq_socket (ctx, ZMQ_DEALER);
assert (client);
rc = zmq_connect (client, "tcp://localhost:9999");
assert (rc == 0);
bounce (server, client);
rc = zmq_close (client);
assert (rc == 0);
rc = zmq_close (server);
assert (rc == 0);
// Shutdown
rc = zmq_ctx_term (ctx);
assert (rc == 0);
// Wait until ZAP handler terminates.
zmq_threadclose (zap_thread);
return 0;
}