libzmq/tests/test_immediate.cpp
Luca Boccassi 5934919f3e Problem: tests bind to hardcoded TCP ports
Solution: use ZMQ_LAST_ENDPOINT in most places. This alllows running
tests in paralle, and on over-booked shared machines where many of
the ports would be already in use.
Keep 3 tests with an hardcoded port, as there are some code paths that
require it (eg: connect before bind), but list those ports in
tests/testutil.hpp as macros so that they do not overlap and still
allow parallel runs.

These changes were inspired by a patch uploaded to Ubuntu by the
package maintainer, Steve Langasek <steve.langasek@ubuntu.com>.
Thank you Steve!
2017-05-01 22:57:05 +01:00

251 lines
7.8 KiB
C++

/*
Copyright (c) 2007-2017 Contributors as noted in the AUTHORS file
This file is part of libzmq, the ZeroMQ core engine in C++.
libzmq is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
As a special exception, the Contributors give you permission to link
this library with independent modules to produce an executable,
regardless of the license terms of these independent modules, and to
copy and distribute the resulting executable under terms of your choice,
provided that you also meet, for each linked independent module, the
terms and conditions of the license of that module. An independent
module is a module which is not derived from or based on this library.
If you modify this library, you must extend this exception to your
version of the library.
libzmq is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "testutil.hpp"
int main (void)
{
setup_test_environment();
int val;
int rc;
char buffer[16];
size_t len = MAX_SOCKET_STRING;
char my_endpoint[MAX_SOCKET_STRING];
// TEST 1.
// First we're going to attempt to send messages to two
// pipes, one connected, the other not. We should see
// the PUSH load balancing to both pipes, and hence half
// of the messages getting queued, as connect() creates a
// pipe immediately.
void *context = zmq_ctx_new();
assert (context);
void *to = zmq_socket(context, ZMQ_PULL);
assert (to);
// Bind the one valid receiver
val = 0;
rc = zmq_setsockopt(to, ZMQ_LINGER, &val, sizeof(val));
assert (rc == 0);
rc = zmq_bind (to, "tcp://127.0.0.1:*");
assert (rc == 0);
rc = zmq_getsockopt (to, ZMQ_LAST_ENDPOINT, my_endpoint, &len);
assert (rc == 0);
// Create a socket pushing to two endpoints - only 1 message should arrive.
void *from = zmq_socket (context, ZMQ_PUSH);
assert(from);
val = 0;
zmq_setsockopt (from, ZMQ_LINGER, &val, sizeof (val));
// This pipe will not connect
rc = zmq_connect (from, "tcp://localhost:5556");
assert (rc == 0);
// This pipe will
rc = zmq_connect (from, my_endpoint);
assert (rc == 0);
msleep (SETTLE_TIME);
// We send 10 messages, 5 should just get stuck in the queue
// for the not-yet-connected pipe
for (int i = 0; i < 10; ++i) {
rc = zmq_send (from, "Hello", 5, 0);
assert (rc == 5);
}
// We now consume from the connected pipe
// - we should see just 5
int timeout = 250;
rc = zmq_setsockopt (to, ZMQ_RCVTIMEO, &timeout, sizeof (int));
assert (rc == 0);
int seen = 0;
while (true) {
rc = zmq_recv (to, &buffer, sizeof (buffer), 0);
if (rc == -1)
break; // Break when we didn't get a message
seen++;
}
assert (seen == 5);
rc = zmq_close (from);
assert (rc == 0);
rc = zmq_close (to);
assert (rc == 0);
rc = zmq_ctx_term (context);
assert (rc == 0);
// TEST 2
// This time we will do the same thing, connect two pipes,
// one of which will succeed in connecting to a bound
// receiver, the other of which will fail. However, we will
// also set the delay attach on connect flag, which should
// cause the pipe attachment to be delayed until the connection
// succeeds.
context = zmq_ctx_new();
// Bind the valid socket
to = zmq_socket (context, ZMQ_PULL);
assert (to);
rc = zmq_bind (to, "tcp://127.0.0.1:*");
assert (rc == 0);
len = MAX_SOCKET_STRING;
rc = zmq_getsockopt (to, ZMQ_LAST_ENDPOINT, my_endpoint, &len);
assert (rc == 0);
val = 0;
rc = zmq_setsockopt (to, ZMQ_LINGER, &val, sizeof(val));
assert (rc == 0);
// Create a socket pushing to two endpoints - all messages should arrive.
from = zmq_socket (context, ZMQ_PUSH);
assert (from);
val = 0;
rc = zmq_setsockopt (from, ZMQ_LINGER, &val, sizeof(val));
assert (rc == 0);
// Set the key flag
val = 1;
rc = zmq_setsockopt (from, ZMQ_IMMEDIATE, &val, sizeof(val));
assert (rc == 0);
// Connect to the invalid socket
rc = zmq_connect (from, "tcp://localhost:5561");
assert (rc == 0);
// Connect to the valid socket
rc = zmq_connect (from, my_endpoint);
assert (rc == 0);
// Send 10 messages, all should be routed to the connected pipe
for (int i = 0; i < 10; ++i) {
rc = zmq_send (from, "Hello", 5, 0);
assert (rc == 5);
}
rc = zmq_setsockopt (to, ZMQ_RCVTIMEO, &timeout, sizeof (int));
assert (rc == 0);
seen = 0;
while (true) {
rc = zmq_recv (to, &buffer, sizeof (buffer), 0);
if (rc == -1)
break; // Break when we didn't get a message
seen++;
}
assert (seen == 10);
rc = zmq_close (from);
assert (rc == 0);
rc = zmq_close (to);
assert (rc == 0);
rc = zmq_ctx_term (context);
assert (rc == 0);
// TEST 3
// This time we want to validate that the same blocking behaviour
// occurs with an existing connection that is broken. We will send
// messages to a connected pipe, disconnect and verify the messages
// block. Then we reconnect and verify messages flow again.
context = zmq_ctx_new ();
void *backend = zmq_socket (context, ZMQ_DEALER);
assert (backend);
void *frontend = zmq_socket (context, ZMQ_DEALER);
assert (frontend);
int zero = 0;
rc = zmq_setsockopt (backend, ZMQ_LINGER, &zero, sizeof (zero));
assert (rc == 0);
rc = zmq_setsockopt (frontend, ZMQ_LINGER, &zero, sizeof (zero));
assert (rc == 0);
// Frontend connects to backend using IMMEDIATE
int on = 1;
rc = zmq_setsockopt (frontend, ZMQ_IMMEDIATE, &on, sizeof (on));
assert (rc == 0);
rc = zmq_bind (backend, "tcp://127.0.0.1:*");
assert (rc == 0);
len = MAX_SOCKET_STRING;
rc = zmq_getsockopt (backend, ZMQ_LAST_ENDPOINT, my_endpoint, &len);
assert (rc == 0);
rc = zmq_connect (frontend, my_endpoint);
assert (rc == 0);
// Ping backend to frontend so we know when the connection is up
rc = zmq_send (backend, "Hello", 5, 0);
assert (rc == 5);
rc = zmq_recv (frontend, buffer, 255, 0);
assert (rc == 5);
// Send message from frontend to backend
rc = zmq_send (frontend, "Hello", 5, ZMQ_DONTWAIT);
assert (rc == 5);
rc = zmq_close (backend);
assert (rc == 0);
// Give time to process disconnect
msleep (SETTLE_TIME * 10);
// Send a message, should fail
rc = zmq_send (frontend, "Hello", 5, ZMQ_DONTWAIT);
assert (rc == -1);
// Recreate backend socket
backend = zmq_socket (context, ZMQ_DEALER);
assert (backend);
rc = zmq_setsockopt (backend, ZMQ_LINGER, &zero, sizeof (zero));
assert (rc == 0);
rc = zmq_bind (backend, my_endpoint);
assert (rc == 0);
// Ping backend to frontend so we know when the connection is up
rc = zmq_send (backend, "Hello", 5, 0);
assert (rc == 5);
rc = zmq_recv (frontend, buffer, 255, 0);
assert (rc == 5);
// After the reconnect, should succeed
rc = zmq_send (frontend, "Hello", 5, ZMQ_DONTWAIT);
assert (rc == 5);
rc = zmq_close (backend);
assert (rc == 0);
rc = zmq_close (frontend);
assert (rc == 0);
rc = zmq_ctx_term (context);
assert (rc == 0);
}