/*
Copyright (c) 2007-2014 Contributors as noted in the AUTHORS file
This file is part of 0MQ.
0MQ is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
0MQ is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see .
*/
#include "poller.hpp"
// On AIX, poll.h has to be included before zmq.h to get consistent
// definition of pollfd structure (AIX uses 'reqevents' and 'retnevents'
// instead of 'events' and 'revents' and defines macros to map from POSIX-y
// names to AIX-specific names).
#if defined ZMQ_POLL_BASED_ON_POLL
#include
#elif defined ZMQ_POLL_BASED_ON_SELECT
#if defined ZMQ_HAVE_WINDOWS
#include "windows.hpp"
#elif defined ZMQ_HAVE_HPUX
#include
#include
#include
#elif defined ZMQ_HAVE_OPENVMS
#include
#include
#else
#include
#endif
#endif
#include "signaler.hpp"
#include "likely.hpp"
#include "stdint.hpp"
#include "config.hpp"
#include "err.hpp"
#include "fd.hpp"
#include "ip.hpp"
#if defined ZMQ_HAVE_EVENTFD
#include
#endif
#if defined ZMQ_HAVE_WINDOWS
#include "windows.hpp"
#else
#include
#include
#include
#include
#include
#endif
#if !defined (ZMQ_HAVE_WINDOWS)
// Helper to sleep for specific number of milliseconds (or until signal)
//
static int sleep_ms (unsigned int ms_)
{
if (ms_ == 0)
return 0;
#if defined ZMQ_HAVE_WINDOWS
Sleep (ms_ > 0 ? ms_ : INFINITE);
return 0;
#elif defined ZMQ_HAVE_ANDROID
usleep (ms_ * 1000);
return 0;
#else
return usleep (ms_ * 1000);
#endif
}
// Helper to wait on close(), for non-blocking sockets, until it completes
// If EAGAIN is received, will sleep briefly (1-100ms) then try again, until
// the overall timeout is reached.
//
static int close_wait_ms (int fd_, unsigned int max_ms_ = 2000)
{
unsigned int ms_so_far = 0;
unsigned int step_ms = max_ms_ / 10;
if (step_ms < 1)
step_ms = 1;
if (step_ms > 100)
step_ms = 100;
int rc = 0; // do not sleep on first attempt
do
{
if (rc == -1 && errno == EAGAIN)
{
sleep_ms (step_ms);
ms_so_far += step_ms;
}
rc = close (fd_);
} while (ms_so_far < max_ms_ && rc == -1 && errno == EAGAIN);
return rc;
}
#endif
zmq::signaler_t::signaler_t ()
{
// Create the socketpair for signaling.
if (make_fdpair (&r, &w) == 0) {
unblock_socket (w);
unblock_socket (r);
}
#ifdef HAVE_FORK
pid = getpid ();
#endif
}
zmq::signaler_t::~signaler_t ()
{
#if defined ZMQ_HAVE_EVENTFD
int rc = close_wait_ms (r);
errno_assert (rc == 0);
#elif defined ZMQ_HAVE_WINDOWS
const struct linger so_linger = { 1, 0 };
int rc = setsockopt (w, SOL_SOCKET, SO_LINGER,
(const char *) &so_linger, sizeof so_linger);
wsa_assert (rc != SOCKET_ERROR);
rc = closesocket (w);
wsa_assert (rc != SOCKET_ERROR);
rc = closesocket (r);
wsa_assert (rc != SOCKET_ERROR);
#else
int rc = close_wait_ms (w);
errno_assert (rc == 0);
rc = close_wait_ms (r);
errno_assert (rc == 0);
#endif
}
zmq::fd_t zmq::signaler_t::get_fd () const
{
return r;
}
void zmq::signaler_t::send ()
{
#if defined HAVE_FORK
if (unlikely (pid != getpid ())) {
//printf("Child process %d signaler_t::send returning without sending #1\n", getpid());
return; // do not send anything in forked child context
}
#endif
#if defined ZMQ_HAVE_EVENTFD
const uint64_t inc = 1;
ssize_t sz = write (w, &inc, sizeof (inc));
errno_assert (sz == sizeof (inc));
#elif defined ZMQ_HAVE_WINDOWS
unsigned char dummy = 0;
int nbytes = ::send (w, (char*) &dummy, sizeof (dummy), 0);
wsa_assert (nbytes != SOCKET_ERROR);
zmq_assert (nbytes == sizeof (dummy));
#else
unsigned char dummy = 0;
while (true) {
ssize_t nbytes = ::send (w, &dummy, sizeof (dummy), 0);
if (unlikely (nbytes == -1 && errno == EINTR))
continue;
#if defined(HAVE_FORK)
if (unlikely (pid != getpid ())) {
//printf("Child process %d signaler_t::send returning without sending #2\n", getpid());
errno = EINTR;
break;
}
#endif
zmq_assert (nbytes == sizeof dummy);
break;
}
#endif
}
int zmq::signaler_t::wait (int timeout_)
{
#ifdef HAVE_FORK
if (unlikely (pid != getpid ())) {
// we have forked and the file descriptor is closed. Emulate an interupt
// response.
//printf("Child process %d signaler_t::wait returning simulating interrupt #1\n", getpid());
errno = EINTR;
return -1;
}
#endif
#ifdef ZMQ_POLL_BASED_ON_POLL
struct pollfd pfd;
pfd.fd = r;
pfd.events = POLLIN;
int rc = poll (&pfd, 1, timeout_);
if (unlikely (rc < 0)) {
errno_assert (errno == EINTR);
return -1;
}
else
if (unlikely (rc == 0)) {
errno = EAGAIN;
return -1;
}
#ifdef HAVE_FORK
else
if (unlikely (pid != getpid ())) {
// we have forked and the file descriptor is closed. Emulate an interupt
// response.
//printf("Child process %d signaler_t::wait returning simulating interrupt #2\n", getpid());
errno = EINTR;
return -1;
}
#endif
zmq_assert (rc == 1);
zmq_assert (pfd.revents & POLLIN);
return 0;
#elif defined ZMQ_POLL_BASED_ON_SELECT
fd_set fds;
FD_ZERO (&fds);
FD_SET (r, &fds);
struct timeval timeout;
if (timeout_ >= 0) {
timeout.tv_sec = timeout_ / 1000;
timeout.tv_usec = timeout_ % 1000 * 1000;
}
#ifdef ZMQ_HAVE_WINDOWS
int rc = select (0, &fds, NULL, NULL,
timeout_ >= 0 ? &timeout : NULL);
wsa_assert (rc != SOCKET_ERROR);
#else
int rc = select (r + 1, &fds, NULL, NULL,
timeout_ >= 0 ? &timeout : NULL);
if (unlikely (rc < 0)) {
errno_assert (errno == EINTR);
return -1;
}
#endif
if (unlikely (rc == 0)) {
errno = EAGAIN;
return -1;
}
zmq_assert (rc == 1);
return 0;
#else
#error
#endif
}
void zmq::signaler_t::recv ()
{
// Attempt to read a signal.
#if defined ZMQ_HAVE_EVENTFD
uint64_t dummy;
ssize_t sz = read (r, &dummy, sizeof (dummy));
errno_assert (sz == sizeof (dummy));
// If we accidentally grabbed the next signal along with the current
// one, return it back to the eventfd object.
if (unlikely (dummy == 2)) {
const uint64_t inc = 1;
ssize_t sz2 = write (w, &inc, sizeof (inc));
errno_assert (sz2 == sizeof (inc));
return;
}
zmq_assert (dummy == 1);
#else
unsigned char dummy;
#if defined ZMQ_HAVE_WINDOWS
int nbytes = ::recv (r, (char*) &dummy, sizeof (dummy), 0);
wsa_assert (nbytes != SOCKET_ERROR);
#else
ssize_t nbytes = ::recv (r, &dummy, sizeof (dummy), 0);
errno_assert (nbytes >= 0);
#endif
zmq_assert (nbytes == sizeof (dummy));
zmq_assert (dummy == 0);
#endif
}
#ifdef HAVE_FORK
void zmq::signaler_t::forked ()
{
// Close file descriptors created in the parent and create new pair
close (r);
close (w);
make_fdpair (&r, &w);
}
#endif
// Returns -1 if we could not make the socket pair successfully
int zmq::signaler_t::make_fdpair (fd_t *r_, fd_t *w_)
{
#if defined ZMQ_HAVE_EVENTFD
fd_t fd = eventfd (0, 0);
if (fd == -1) {
errno_assert (errno == ENFILE || errno == EMFILE);
*w_ = *r_ = -1;
return -1;
}
else {
*w_ = *r_ = fd;
return 0;
}
#elif defined ZMQ_HAVE_WINDOWS
# if !defined _WIN32_WCE
// Windows CE does not manage security attributes
SECURITY_DESCRIPTOR sd;
SECURITY_ATTRIBUTES sa;
memset (&sd, 0, sizeof sd);
memset (&sa, 0, sizeof sa);
InitializeSecurityDescriptor (&sd, SECURITY_DESCRIPTOR_REVISION);
SetSecurityDescriptorDacl (&sd, TRUE, 0, FALSE);
sa.nLength = sizeof (SECURITY_ATTRIBUTES);
sa.lpSecurityDescriptor = &sd;
# endif
// This function has to be in a system-wide critical section so that
// two instances of the library don't accidentally create signaler
// crossing the process boundary.
// We'll use named event object to implement the critical section.
// Note that if the event object already exists, the CreateEvent requests
// EVENT_ALL_ACCESS access right. If this fails, we try to open
// the event object asking for SYNCHRONIZE access only.
HANDLE sync = NULL;
// Create critical section only if using fixed signaler port
// Use problematic Event implementation for compatibility if using old port 5905.
// Otherwise use Mutex implementation.
int event_signaler_port = 5905;
if (signaler_port == event_signaler_port) {
# if !defined _WIN32_WCE
sync = CreateEventW (&sa, FALSE, TRUE, L"Global\\zmq-signaler-port-sync");
# else
sync = CreateEventW (NULL, FALSE, TRUE, L"Global\\zmq-signaler-port-sync");
# endif
if (sync == NULL && GetLastError () == ERROR_ACCESS_DENIED)
sync = OpenEventW (SYNCHRONIZE | EVENT_MODIFY_STATE,
FALSE, L"Global\\zmq-signaler-port-sync");
win_assert (sync != NULL);
}
else
if (signaler_port != 0) {
wchar_t mutex_name [MAX_PATH];
swprintf (mutex_name, MAX_PATH, L"Global\\zmq-signaler-port-%d", signaler_port);
# if !defined _WIN32_WCE
sync = CreateMutexW (&sa, FALSE, mutex_name);
# else
sync = CreateMutexW (NULL, FALSE, mutex_name);
# endif
if (sync == NULL && GetLastError () == ERROR_ACCESS_DENIED)
sync = OpenMutexW (SYNCHRONIZE, FALSE, mutex_name);
win_assert (sync != NULL);
}
// Windows has no 'socketpair' function. CreatePipe is no good as pipe
// handles cannot be polled on. Here we create the socketpair by hand.
*w_ = INVALID_SOCKET;
*r_ = INVALID_SOCKET;
// Create listening socket.
SOCKET listener;
listener = open_socket (AF_INET, SOCK_STREAM, 0);
wsa_assert (listener != INVALID_SOCKET);
// Set SO_REUSEADDR and TCP_NODELAY on listening socket.
BOOL so_reuseaddr = 1;
int rc = setsockopt (listener, SOL_SOCKET, SO_REUSEADDR,
(char *)&so_reuseaddr, sizeof so_reuseaddr);
wsa_assert (rc != SOCKET_ERROR);
BOOL tcp_nodelay = 1;
rc = setsockopt (listener, IPPROTO_TCP, TCP_NODELAY,
(char *)&tcp_nodelay, sizeof tcp_nodelay);
wsa_assert (rc != SOCKET_ERROR);
// Init sockaddr to signaler port.
struct sockaddr_in addr;
memset (&addr, 0, sizeof addr);
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl (INADDR_LOOPBACK);
addr.sin_port = htons (signaler_port);
// Create the writer socket.
*w_ = open_socket (AF_INET, SOCK_STREAM, 0);
wsa_assert (*w_ != INVALID_SOCKET);
// Set TCP_NODELAY on writer socket.
rc = setsockopt (*w_, IPPROTO_TCP, TCP_NODELAY,
(char *) &tcp_nodelay, sizeof tcp_nodelay);
wsa_assert (rc != SOCKET_ERROR);
if (sync != NULL) {
// Enter the critical section.
DWORD dwrc = WaitForSingleObject (sync, INFINITE);
zmq_assert (dwrc == WAIT_OBJECT_0 || dwrc == WAIT_ABANDONED);
}
// Bind listening socket to signaler port.
rc = bind (listener, (const struct sockaddr*) &addr, sizeof addr);
if (rc != SOCKET_ERROR && signaler_port == 0) {
// Retrieve ephemeral port number
int addrlen = sizeof addr;
rc = getsockname (listener, (struct sockaddr*) &addr, &addrlen);
}
// Listen for incoming connections.
if (rc != SOCKET_ERROR)
rc = listen (listener, 1);
// Connect writer to the listener.
if (rc != SOCKET_ERROR)
rc = connect (*w_, (struct sockaddr*) &addr, sizeof addr);
// Accept connection from writer.
if (rc != SOCKET_ERROR)
*r_ = accept (listener, NULL, NULL);
// Save errno if error occurred in bind/listen/connect/accept.
int saved_errno = 0;
if (*r_ == INVALID_SOCKET)
saved_errno = WSAGetLastError ();
// We don't need the listening socket anymore. Close it.
closesocket (listener);
if (sync != NULL) {
// Exit the critical section.
BOOL brc;
if (signaler_port == event_signaler_port)
brc = SetEvent (sync);
else
brc = ReleaseMutex (sync);
win_assert (brc != 0);
// Release the kernel object
brc = CloseHandle (sync);
win_assert (brc != 0);
}
if (*r_ != INVALID_SOCKET) {
# if !defined _WIN32_WCE
// On Windows, preventing sockets to be inherited by child processes.
BOOL brc = SetHandleInformation ((HANDLE) *r_, HANDLE_FLAG_INHERIT, 0);
win_assert (brc);
# endif
return 0;
}
else {
// Cleanup writer if connection failed
if (*w_ != INVALID_SOCKET) {
rc = closesocket (*w_);
wsa_assert (rc != SOCKET_ERROR);
*w_ = INVALID_SOCKET;
}
// Set errno from saved value
errno = wsa_error_to_errno (saved_errno);
return -1;
}
#elif defined ZMQ_HAVE_OPENVMS
// Whilst OpenVMS supports socketpair - it maps to AF_INET only. Further,
// it does not set the socket options TCP_NODELAY and TCP_NODELACK which
// can lead to performance problems.
//
// The bug will be fixed in V5.6 ECO4 and beyond. In the meantime, we'll
// create the socket pair manually.
struct sockaddr_in lcladdr;
memset (&lcladdr, 0, sizeof lcladdr);
lcladdr.sin_family = AF_INET;
lcladdr.sin_addr.s_addr = htonl (INADDR_LOOPBACK);
lcladdr.sin_port = 0;
int listener = open_socket (AF_INET, SOCK_STREAM, 0);
errno_assert (listener != -1);
int on = 1;
int rc = setsockopt (listener, IPPROTO_TCP, TCP_NODELAY, &on, sizeof on);
errno_assert (rc != -1);
rc = setsockopt (listener, IPPROTO_TCP, TCP_NODELACK, &on, sizeof on);
errno_assert (rc != -1);
rc = bind (listener, (struct sockaddr*) &lcladdr, sizeof lcladdr);
errno_assert (rc != -1);
socklen_t lcladdr_len = sizeof lcladdr;
rc = getsockname (listener, (struct sockaddr*) &lcladdr, &lcladdr_len);
errno_assert (rc != -1);
rc = listen (listener, 1);
errno_assert (rc != -1);
*w_ = open_socket (AF_INET, SOCK_STREAM, 0);
errno_assert (*w_ != -1);
rc = setsockopt (*w_, IPPROTO_TCP, TCP_NODELAY, &on, sizeof on);
errno_assert (rc != -1);
rc = setsockopt (*w_, IPPROTO_TCP, TCP_NODELACK, &on, sizeof on);
errno_assert (rc != -1);
rc = connect (*w_, (struct sockaddr*) &lcladdr, sizeof lcladdr);
errno_assert (rc != -1);
*r_ = accept (listener, NULL, NULL);
errno_assert (*r_ != -1);
close (listener);
return 0;
#else
// All other implementations support socketpair()
int sv [2];
int rc = socketpair (AF_UNIX, SOCK_STREAM, 0, sv);
if (rc == -1) {
errno_assert (errno == ENFILE || errno == EMFILE);
*w_ = *r_ = -1;
return -1;
}
else {
*w_ = sv [0];
*r_ = sv [1];
return 0;
}
#endif
}