#!/usr/bin/python # # This script assumes that a CSV file produced by "generate_csv.sh" is provided as input # # configurable values: INPUT_FILE_PUSHPULL_TCP_THROUGHPUT="pushpull_tcp_thr_results.csv" INPUT_FILE_PUSHPULL_INPROC_THROUGHPUT="pushpull_inproc_thr_results.csv" INPUT_FILE_PUBSUBPROXY_INPROC_THROUGHPUT="pubsubproxy_inproc_thr_results.csv" INPUT_FILE_REQREP_TCP_LATENCY="reqrep_tcp_lat_results.csv" # dependencies import matplotlib.pyplot as plt import numpy as np # functions def plot_throughput(csv_filename, title): message_size_bytes, message_count, pps, mbps = np.loadtxt(csv_filename, delimiter=',', unpack=True) plt.semilogx(message_size_bytes, pps / 1e6, label='PPS [Mmsg/s]', marker='x') plt.semilogx(message_size_bytes, mbps / 1e3, label='Throughput [Mb/s]', marker='o') plt.xlabel('Message size [B]') plt.title(title) plt.legend() plt.show() plt.savefig(csv_filename.replace('.csv', '.png')) def plot_latency(csv_filename, title): message_size_bytes, message_count, lat = np.loadtxt(csv_filename, delimiter=',', unpack=True) plt.semilogx(message_size_bytes, lat, label='Latency [us]', marker='o') plt.xlabel('Message size [B]') plt.title(title) plt.legend() plt.show() plt.savefig(csv_filename.replace('.csv', '.png')) # main plot_throughput(INPUT_FILE_PUSHPULL_TCP_THROUGHPUT, 'ZeroMQ PUSH/PULL socket throughput, TCP transport') plot_throughput(INPUT_FILE_PUSHPULL_INPROC_THROUGHPUT, 'ZeroMQ PUSH/PULL socket throughput, INPROC transport') plot_throughput(INPUT_FILE_PUBSUBPROXY_INPROC_THROUGHPUT, 'ZeroMQ PUB/SUB PROXY socket throughput, INPROC transport') plot_latency(INPUT_FILE_REQREP_TCP_LATENCY, 'ZeroMQ REQ/REP socket latency, TCP transport')