/* Copyright (c) 2007-2016 Contributors as noted in the AUTHORS file This file is part of libzmq, the ZeroMQ core engine in C++. libzmq is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. As a special exception, the Contributors give you permission to link this library with independent modules to produce an executable, regardless of the license terms of these independent modules, and to copy and distribute the resulting executable under terms of your choice, provided that you also meet, for each linked independent module, the terms and conditions of the license of that module. An independent module is a module which is not derived from or based on this library. If you modify this library, you must extend this exception to your version of the library. libzmq is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see . */ #include "precompiled.hpp" #include "macros.hpp" #include "ip.hpp" #include "tcp.hpp" #include "err.hpp" #if !defined ZMQ_HAVE_WINDOWS #include #include #include #include #include #ifdef ZMQ_HAVE_VXWORKS #include #endif #endif #if defined ZMQ_HAVE_OPENVMS #include #endif int zmq::tune_tcp_socket (fd_t s_) { // Disable Nagle's algorithm. We are doing data batching on 0MQ level, // so using Nagle wouldn't improve throughput in anyway, but it would // hurt latency. int nodelay = 1; int rc = setsockopt (s_, IPPROTO_TCP, TCP_NODELAY, (char *) &nodelay, sizeof (int)); tcp_assert_tuning_error (s_, rc); if (rc != 0) return rc; #ifdef ZMQ_HAVE_OPENVMS // Disable delayed acknowledgements as they hurt latency significantly. int nodelack = 1; rc = setsockopt (s_, IPPROTO_TCP, TCP_NODELACK, (char *) &nodelack, sizeof (int)); tcp_assert_tuning_error (s_, rc); #endif return rc; } int zmq::set_tcp_send_buffer (fd_t sockfd_, int bufsize_) { const int rc = setsockopt (sockfd_, SOL_SOCKET, SO_SNDBUF, (char *) &bufsize_, sizeof bufsize_); tcp_assert_tuning_error (sockfd_, rc); return rc; } int zmq::set_tcp_receive_buffer (fd_t sockfd_, int bufsize_) { const int rc = setsockopt (sockfd_, SOL_SOCKET, SO_RCVBUF, (char *) &bufsize_, sizeof bufsize_); tcp_assert_tuning_error (sockfd_, rc); return rc; } int zmq::tune_tcp_keepalives (fd_t s_, int keepalive_, int keepalive_cnt_, int keepalive_idle_, int keepalive_intvl_) { // These options are used only under certain #ifdefs below. LIBZMQ_UNUSED (keepalive_); LIBZMQ_UNUSED (keepalive_cnt_); LIBZMQ_UNUSED (keepalive_idle_); LIBZMQ_UNUSED (keepalive_intvl_); // If none of the #ifdefs apply, then s_ is unused. LIBZMQ_UNUSED (s_); // Tuning TCP keep-alives if platform allows it // All values = -1 means skip and leave it for OS #ifdef ZMQ_HAVE_WINDOWS if (keepalive_ != -1) { tcp_keepalive keepalive_opts; keepalive_opts.onoff = keepalive_; keepalive_opts.keepalivetime = keepalive_idle_ != -1 ? keepalive_idle_ * 1000 : 7200000; keepalive_opts.keepaliveinterval = keepalive_intvl_ != -1 ? keepalive_intvl_ * 1000 : 1000; DWORD num_bytes_returned; int rc = WSAIoctl (s_, SIO_KEEPALIVE_VALS, &keepalive_opts, sizeof (keepalive_opts), NULL, 0, &num_bytes_returned, NULL, NULL); tcp_assert_tuning_error (s_, rc); if (rc == SOCKET_ERROR) return rc; } #else #ifdef ZMQ_HAVE_SO_KEEPALIVE if (keepalive_ != -1) { int rc = setsockopt (s_, SOL_SOCKET, SO_KEEPALIVE, (char *) &keepalive_, sizeof (int)); tcp_assert_tuning_error (s_, rc); if (rc != 0) return rc; #ifdef ZMQ_HAVE_TCP_KEEPCNT if (keepalive_cnt_ != -1) { int rc = setsockopt (s_, IPPROTO_TCP, TCP_KEEPCNT, &keepalive_cnt_, sizeof (int)); tcp_assert_tuning_error (s_, rc); if (rc != 0) return rc; } #endif // ZMQ_HAVE_TCP_KEEPCNT #ifdef ZMQ_HAVE_TCP_KEEPIDLE if (keepalive_idle_ != -1) { int rc = setsockopt (s_, IPPROTO_TCP, TCP_KEEPIDLE, &keepalive_idle_, sizeof (int)); tcp_assert_tuning_error (s_, rc); if (rc != 0) return rc; } #else // ZMQ_HAVE_TCP_KEEPIDLE #ifdef ZMQ_HAVE_TCP_KEEPALIVE if (keepalive_idle_ != -1) { int rc = setsockopt (s_, IPPROTO_TCP, TCP_KEEPALIVE, &keepalive_idle_, sizeof (int)); tcp_assert_tuning_error (s_, rc); if (rc != 0) return rc; } #endif // ZMQ_HAVE_TCP_KEEPALIVE #endif // ZMQ_HAVE_TCP_KEEPIDLE #ifdef ZMQ_HAVE_TCP_KEEPINTVL if (keepalive_intvl_ != -1) { int rc = setsockopt (s_, IPPROTO_TCP, TCP_KEEPINTVL, &keepalive_intvl_, sizeof (int)); tcp_assert_tuning_error (s_, rc); if (rc != 0) return rc; } #endif // ZMQ_HAVE_TCP_KEEPINTVL } #endif // ZMQ_HAVE_SO_KEEPALIVE #endif // ZMQ_HAVE_WINDOWS return 0; } int zmq::tune_tcp_maxrt (fd_t sockfd_, int timeout_) { if (timeout_ <= 0) return 0; LIBZMQ_UNUSED (sockfd_); #if defined(ZMQ_HAVE_WINDOWS) && defined(TCP_MAXRT) // msdn says it's supported in >= Vista, >= Windows Server 2003 timeout_ /= 1000; // in seconds int rc = setsockopt (sockfd_, IPPROTO_TCP, TCP_MAXRT, (char *) &timeout_, sizeof (timeout_)); tcp_assert_tuning_error (sockfd_, rc); return rc; // FIXME: should be ZMQ_HAVE_TCP_USER_TIMEOUT #elif defined(TCP_USER_TIMEOUT) int rc = setsockopt (sockfd_, IPPROTO_TCP, TCP_USER_TIMEOUT, &timeout_, sizeof (timeout_)); tcp_assert_tuning_error (sockfd_, rc); return rc; #endif return 0; } int zmq::tcp_write (fd_t s_, const void *data_, size_t size_) { #ifdef ZMQ_HAVE_WINDOWS int nbytes = send (s_, (char *) data_, (int) size_, 0); // If not a single byte can be written to the socket in non-blocking mode // we'll get an error (this may happen during the speculative write). const int last_error = WSAGetLastError (); if (nbytes == SOCKET_ERROR && last_error == WSAEWOULDBLOCK) return 0; // Signalise peer failure. if (nbytes == SOCKET_ERROR && (last_error == WSAENETDOWN || last_error == WSAENETRESET || last_error == WSAEHOSTUNREACH || last_error == WSAECONNABORTED || last_error == WSAETIMEDOUT || last_error == WSAECONNRESET)) return -1; // Circumvent a Windows bug: // See https://support.microsoft.com/en-us/kb/201213 // See https://zeromq.jira.com/browse/LIBZMQ-195 if (nbytes == SOCKET_ERROR && last_error == WSAENOBUFS) return 0; wsa_assert (nbytes != SOCKET_ERROR); return nbytes; #else ssize_t nbytes = send (s_, (char *) data_, size_, 0); // Several errors are OK. When speculative write is being done we may not // be able to write a single byte from the socket. Also, SIGSTOP issued // by a debugging tool can result in EINTR error. if (nbytes == -1 && (errno == EAGAIN || errno == EWOULDBLOCK || errno == EINTR)) return 0; // Signalise peer failure. if (nbytes == -1) { errno_assert (errno != EACCES && errno != EBADF && errno != EDESTADDRREQ && errno != EFAULT && errno != EISCONN && errno != EMSGSIZE && errno != ENOMEM && errno != ENOTSOCK && errno != EOPNOTSUPP); return -1; } return static_cast (nbytes); #endif } int zmq::tcp_read (fd_t s_, void *data_, size_t size_) { #ifdef ZMQ_HAVE_WINDOWS const int rc = recv (s_, (char *) data_, (int) size_, 0); // If not a single byte can be read from the socket in non-blocking mode // we'll get an error (this may happen during the speculative read). if (rc == SOCKET_ERROR) { const int last_error = WSAGetLastError (); if (last_error == WSAEWOULDBLOCK) { errno = EAGAIN; } else { wsa_assert ( last_error == WSAENETDOWN || last_error == WSAENETRESET || last_error == WSAECONNABORTED || last_error == WSAETIMEDOUT || last_error == WSAECONNRESET || last_error == WSAECONNREFUSED || last_error == WSAENOTCONN); errno = wsa_error_to_errno (last_error); } } return rc == SOCKET_ERROR ? -1 : rc; #else const ssize_t rc = recv (s_, (char *) data_, size_, 0); // Several errors are OK. When speculative read is being done we may not // be able to read a single byte from the socket. Also, SIGSTOP issued // by a debugging tool can result in EINTR error. if (rc == -1) { errno_assert (errno != EBADF && errno != EFAULT && errno != ENOMEM && errno != ENOTSOCK); if (errno == EWOULDBLOCK || errno == EINTR) errno = EAGAIN; } return static_cast (rc); #endif } void zmq::tcp_assert_tuning_error (zmq::fd_t s_, int rc_) { if (rc_ == 0) return; // Check whether an error occurred int err = 0; #if defined ZMQ_HAVE_HPUX || defined ZMQ_HAVE_VXWORKS int len = sizeof err; #else socklen_t len = sizeof err; #endif int rc = getsockopt (s_, SOL_SOCKET, SO_ERROR, (char *) &err, &len); // Assert if the error was caused by 0MQ bug. // Networking problems are OK. No need to assert. #ifdef ZMQ_HAVE_WINDOWS zmq_assert (rc == 0); if (err != 0) { wsa_assert (err == WSAECONNREFUSED || err == WSAECONNRESET || err == WSAECONNABORTED || err == WSAEINTR || err == WSAETIMEDOUT || err == WSAEHOSTUNREACH || err == WSAENETUNREACH || err == WSAENETDOWN || err == WSAENETRESET || err == WSAEACCES || err == WSAEINVAL || err == WSAEADDRINUSE); } #else // Following code should handle both Berkeley-derived socket // implementations and Solaris. if (rc == -1) err = errno; if (err != 0) { errno = err; errno_assert (errno == ECONNREFUSED || errno == ECONNRESET || errno == ECONNABORTED || errno == EINTR || errno == ETIMEDOUT || errno == EHOSTUNREACH || errno == ENETUNREACH || errno == ENETDOWN || errno == ENETRESET || errno == EINVAL); } #endif } void zmq::tcp_tune_loopback_fast_path (const fd_t socket_) { #if defined ZMQ_HAVE_WINDOWS && defined SIO_LOOPBACK_FAST_PATH int sio_loopback_fastpath = 1; DWORD numberOfBytesReturned = 0; int rc = WSAIoctl (socket_, SIO_LOOPBACK_FAST_PATH, &sio_loopback_fastpath, sizeof sio_loopback_fastpath, NULL, 0, &numberOfBytesReturned, 0, 0); if (SOCKET_ERROR == rc) { DWORD lastError = ::WSAGetLastError (); if (WSAEOPNOTSUPP == lastError) { // This system is not Windows 8 or Server 2012, and the call is not supported. } else { wsa_assert (false); } } #else LIBZMQ_UNUSED (socket_); #endif }