/* Copyright (c) 2009-2011 250bpm s.r.o. Copyright (c) 2007-2009 iMatix Corporation Copyright (c) 2011 VMware, Inc. Copyright (c) 2007-2011 Other contributors as noted in the AUTHORS file This file is part of 0MQ. 0MQ is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. 0MQ is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see . */ #include #include #include #include "platform.hpp" #if defined ZMQ_HAVE_WINDOWS #include "windows.hpp" #if defined _MSC_VER #if defined WINCE #include #else #include #endif #endif #else #include #endif #include "socket_base.hpp" #include "tcp_listener.hpp" #include "ipc_listener.hpp" #include "tcp_connecter.hpp" #include "io_thread.hpp" #include "session_base.hpp" #include "config.hpp" #include "pipe.hpp" #include "err.hpp" #include "ctx.hpp" #include "platform.hpp" #include "likely.hpp" #include "msg.hpp" #include "address.hpp" #include "ipc_address.hpp" #include "tcp_address.hpp" #ifdef ZMQ_HAVE_OPENPGM #include "pgm_socket.hpp" #endif #include "pair.hpp" #include "pub.hpp" #include "sub.hpp" #include "req.hpp" #include "rep.hpp" #include "pull.hpp" #include "push.hpp" #include "dealer.hpp" #include "router.hpp" #include "xpub.hpp" #include "xsub.hpp" bool zmq::socket_base_t::check_tag () { return tag == 0xbaddecaf; } zmq::socket_base_t *zmq::socket_base_t::create (int type_, class ctx_t *parent_, uint32_t tid_, int sid_) { socket_base_t *s = NULL; switch (type_) { case ZMQ_PAIR: s = new (std::nothrow) pair_t (parent_, tid_, sid_); break; case ZMQ_PUB: s = new (std::nothrow) pub_t (parent_, tid_, sid_); break; case ZMQ_SUB: s = new (std::nothrow) sub_t (parent_, tid_, sid_); break; case ZMQ_REQ: s = new (std::nothrow) req_t (parent_, tid_, sid_); break; case ZMQ_REP: s = new (std::nothrow) rep_t (parent_, tid_, sid_); break; case ZMQ_DEALER: s = new (std::nothrow) dealer_t (parent_, tid_, sid_); break; case ZMQ_ROUTER: s = new (std::nothrow) router_t (parent_, tid_, sid_); break; case ZMQ_PULL: s = new (std::nothrow) pull_t (parent_, tid_, sid_); break; case ZMQ_PUSH: s = new (std::nothrow) push_t (parent_, tid_, sid_); break; case ZMQ_XPUB: s = new (std::nothrow) xpub_t (parent_, tid_, sid_); break; case ZMQ_XSUB: s = new (std::nothrow) xsub_t (parent_, tid_, sid_); break; default: errno = EINVAL; return NULL; } alloc_assert (s); return s; } zmq::socket_base_t::socket_base_t (ctx_t *parent_, uint32_t tid_, int sid_) : own_t (parent_, tid_), tag (0xbaddecaf), ctx_terminated (false), destroyed (false), last_tsc (0), ticks (0), rcvmore (false) { options.socket_id = sid_; } zmq::socket_base_t::~socket_base_t () { zmq_assert (destroyed); } zmq::mailbox_t *zmq::socket_base_t::get_mailbox () { return &mailbox; } void zmq::socket_base_t::stop () { // Called by ctx when it is terminated (zmq_term). // 'stop' command is sent from the threads that called zmq_term to // the thread owning the socket. This way, blocking call in the // owner thread can be interrupted. send_stop (); } int zmq::socket_base_t::parse_uri (const char *uri_, std::string &protocol_, std::string &address_) { zmq_assert (uri_ != NULL); std::string uri (uri_); std::string::size_type pos = uri.find ("://"); if (pos == std::string::npos) { errno = EINVAL; return -1; } protocol_ = uri.substr (0, pos); address_ = uri.substr (pos + 3); if (protocol_.empty () || address_.empty ()) { errno = EINVAL; return -1; } return 0; } int zmq::socket_base_t::check_protocol (const std::string &protocol_) { // First check out whether the protcol is something we are aware of. if (protocol_ != "inproc" && protocol_ != "ipc" && protocol_ != "tcp" && protocol_ != "pgm" && protocol_ != "epgm") { errno = EPROTONOSUPPORT; return -1; } // If 0MQ is not compiled with OpenPGM, pgm and epgm transports // are not avaialble. #if !defined ZMQ_HAVE_OPENPGM if (protocol_ == "pgm" || protocol_ == "epgm") { errno = EPROTONOSUPPORT; return -1; } #endif // IPC transport is not available on Windows and OpenVMS. #if defined ZMQ_HAVE_WINDOWS || defined ZMQ_HAVE_OPENVMS if (protocol_ == "ipc") { // Unknown protocol. errno = EPROTONOSUPPORT; return -1; } #endif // Check whether socket type and transport protocol match. // Specifically, multicast protocols can't be combined with // bi-directional messaging patterns (socket types). if ((protocol_ == "pgm" || protocol_ == "epgm") && options.type != ZMQ_PUB && options.type != ZMQ_SUB && options.type != ZMQ_XPUB && options.type != ZMQ_XSUB) { errno = ENOCOMPATPROTO; return -1; } // Protocol is available. return 0; } void zmq::socket_base_t::attach_pipe (pipe_t *pipe_, bool icanhasall_) { // First, register the pipe so that we can terminate it later on. pipe_->set_event_sink (this); pipes.push_back (pipe_); // Let the derived socket type know about new pipe. xattach_pipe (pipe_, icanhasall_); // If the socket is already being closed, ask any new pipes to terminate // straight away. if (is_terminating ()) { register_term_acks (1); pipe_->terminate (false); } } int zmq::socket_base_t::setsockopt (int option_, const void *optval_, size_t optvallen_) { if (unlikely (ctx_terminated)) { errno = ETERM; return -1; } // First, check whether specific socket type overloads the option. int rc = xsetsockopt (option_, optval_, optvallen_); if (rc == 0 || errno != EINVAL) return rc; // If the socket type doesn't support the option, pass it to // the generic option parser. return options.setsockopt (option_, optval_, optvallen_); } int zmq::socket_base_t::getsockopt (int option_, void *optval_, size_t *optvallen_) { if (unlikely (ctx_terminated)) { errno = ETERM; return -1; } if (option_ == ZMQ_RCVMORE) { if (*optvallen_ < sizeof (int)) { errno = EINVAL; return -1; } *((int*) optval_) = rcvmore ? 1 : 0; *optvallen_ = sizeof (int); return 0; } if (option_ == ZMQ_FD) { if (*optvallen_ < sizeof (fd_t)) { errno = EINVAL; return -1; } *((fd_t*) optval_) = mailbox.get_fd (); *optvallen_ = sizeof (fd_t); return 0; } if (option_ == ZMQ_EVENTS) { if (*optvallen_ < sizeof (int)) { errno = EINVAL; return -1; } int rc = process_commands (0, false); if (rc != 0 && (errno == EINTR || errno == ETERM)) return -1; errno_assert (rc == 0); *((int*) optval_) = 0; if (has_out ()) *((int*) optval_) |= ZMQ_POLLOUT; if (has_in ()) *((int*) optval_) |= ZMQ_POLLIN; *optvallen_ = sizeof (int); return 0; } return options.getsockopt (option_, optval_, optvallen_); } int zmq::socket_base_t::bind (const char *addr_) { if (unlikely (ctx_terminated)) { errno = ETERM; return -1; } // Process pending commands, if any. int rc = process_commands (0, false); if (unlikely (rc != 0)) return -1; // Parse addr_ string. std::string protocol; std::string address; rc = parse_uri (addr_, protocol, address); if (rc != 0) return -1; rc = check_protocol (protocol); if (rc != 0) return -1; if (protocol == "inproc") { endpoint_t endpoint = {this, options}; int rc = register_endpoint (addr_, endpoint); if (rc == 0) { // Save last endpoint URI options.last_endpoint.assign (addr_); } return rc; } if (protocol == "pgm" || protocol == "epgm") { // For convenience's sake, bind can be used interchageable with // connect for PGM and EPGM transports. return connect (addr_); } // Remaining trasnports require to be run in an I/O thread, so at this // point we'll choose one. io_thread_t *io_thread = choose_io_thread (options.affinity); if (!io_thread) { errno = EMTHREAD; return -1; } if (protocol == "tcp") { tcp_listener_t *listener = new (std::nothrow) tcp_listener_t ( io_thread, this, options); alloc_assert (listener); int rc = listener->set_address (address.c_str ()); if (rc != 0) { delete listener; monitor_event (ZMQ_EVENT_BIND_FAILED, addr_, zmq_errno()); return -1; } // Save last endpoint URI listener->get_address (options.last_endpoint); add_endpoint (addr_, (own_t *) listener); return 0; } #if !defined ZMQ_HAVE_WINDOWS && !defined ZMQ_HAVE_OPENVMS if (protocol == "ipc") { ipc_listener_t *listener = new (std::nothrow) ipc_listener_t ( io_thread, this, options); alloc_assert (listener); int rc = listener->set_address (address.c_str ()); if (rc != 0) { delete listener; monitor_event (ZMQ_EVENT_BIND_FAILED, addr_, zmq_errno()); return -1; } // Save last endpoint URI listener->get_address (options.last_endpoint); add_endpoint (addr_, (own_t *) listener); return 0; } #endif zmq_assert (false); return -1; } int zmq::socket_base_t::connect (const char *addr_) { if (unlikely (ctx_terminated)) { errno = ETERM; return -1; } // Process pending commands, if any. int rc = process_commands (0, false); if (unlikely (rc != 0)) return -1; // Parse addr_ string. std::string protocol; std::string address; rc = parse_uri (addr_, protocol, address); if (rc != 0) return -1; rc = check_protocol (protocol); if (rc != 0) return -1; if (protocol == "inproc") { // TODO: inproc connect is specific with respect to creating pipes // as there's no 'reconnect' functionality implemented. Once that // is in place we should follow generic pipe creation algorithm. // Find the peer endpoint. endpoint_t peer = find_endpoint (addr_); if (!peer.socket) return -1; // The total HWM for an inproc connection should be the sum of // the binder's HWM and the connector's HWM. int sndhwm; int rcvhwm; if (options.sndhwm == 0 || peer.options.rcvhwm == 0) sndhwm = 0; else sndhwm = options.sndhwm + peer.options.rcvhwm; if (options.rcvhwm == 0 || peer.options.sndhwm == 0) rcvhwm = 0; else rcvhwm = options.rcvhwm + peer.options.sndhwm; // Create a bi-directional pipe to connect the peers. object_t *parents [2] = {this, peer.socket}; pipe_t *pipes [2] = {NULL, NULL}; int hwms [2] = {sndhwm, rcvhwm}; bool delays [2] = {options.delay_on_disconnect, options.delay_on_close}; int rc = pipepair (parents, pipes, hwms, delays); errno_assert (rc == 0); // Attach local end of the pipe to this socket object. attach_pipe (pipes [0]); // If required, send the identity of the local socket to the peer. if (options.send_identity) { msg_t id; rc = id.init_size (options.identity_size); errno_assert (rc == 0); memcpy (id.data (), options.identity, options.identity_size); id.set_flags (msg_t::identity); bool written = pipes [0]->write (&id); zmq_assert (written); pipes [0]->flush (); } // If required, send the identity of the peer to the local socket. if (peer.options.send_identity) { msg_t id; rc = id.init_size (peer.options.identity_size); errno_assert (rc == 0); memcpy (id.data (), peer.options.identity, peer.options.identity_size); id.set_flags (msg_t::identity); bool written = pipes [1]->write (&id); zmq_assert (written); pipes [1]->flush (); } // Attach remote end of the pipe to the peer socket. Note that peer's // seqnum was incremented in find_endpoint function. We don't need it // increased here. send_bind (peer.socket, pipes [1], false); // Save last endpoint URI options.last_endpoint.assign (addr_); return 0; } // Choose the I/O thread to run the session in. io_thread_t *io_thread = choose_io_thread (options.affinity); if (!io_thread) { errno = EMTHREAD; return -1; } address_t *paddr = new (std::nothrow) address_t (protocol, address); alloc_assert (paddr); // Resolve address (if needed by the protocol) if (protocol == "tcp") { paddr->resolved.tcp_addr = new (std::nothrow) tcp_address_t (); alloc_assert (paddr->resolved.tcp_addr); int rc = paddr->resolved.tcp_addr->resolve ( address.c_str (), false, options.ipv4only ? true : false); if (rc != 0) { delete paddr; return -1; } } #if !defined ZMQ_HAVE_WINDOWS && !defined ZMQ_HAVE_OPENVMS else if(protocol == "ipc") { paddr->resolved.ipc_addr = new (std::nothrow) ipc_address_t (); alloc_assert (paddr->resolved.ipc_addr); int rc = paddr->resolved.ipc_addr->resolve (address.c_str ()); if (rc != 0) { delete paddr; return -1; } } #endif #ifdef ZMQ_HAVE_OPENPGM if (protocol == "pgm" || protocol == "epgm") { struct pgm_addrinfo_t *res = NULL; uint16_t port_number = 0; int rc = pgm_socket_t::init_address(address.c_str(), &res, &port_number); if (res != NULL) pgm_freeaddrinfo (res); if (rc != 0 || port_number == 0) return -1; } #endif // Create session. session_base_t *session = session_base_t::create (io_thread, true, this, options, paddr); errno_assert (session); // PGM does not support subscription forwarding; ask for all data to be // sent to this pipe. bool icanhasall = false; if (protocol == "pgm" || protocol == "epgm") icanhasall = true; if (options.delay_attach_on_connect != 1 && icanhasall != true) { // Create a bi-directional pipe. object_t *parents [2] = {this, session}; pipe_t *pipes [2] = {NULL, NULL}; int hwms [2] = {options.sndhwm, options.rcvhwm}; bool delays [2] = {options.delay_on_disconnect, options.delay_on_close}; rc = pipepair (parents, pipes, hwms, delays); errno_assert (rc == 0); // Attach local end of the pipe to the socket object. attach_pipe (pipes [0], icanhasall); // Attach remote end of the pipe to the session object later on. session->attach_pipe (pipes [1]); } // Save last endpoint URI paddr->to_string (options.last_endpoint); add_endpoint (addr_, (own_t *) session); return 0; } void zmq::socket_base_t::add_endpoint (const char *addr_, own_t *endpoint_) { // Activate the session. Make it a child of this socket. launch_child (endpoint_); endpoints.insert (endpoints_t::value_type (std::string (addr_), endpoint_)); } int zmq::socket_base_t::term_endpoint (const char *addr_) { // Check whether the library haven't been shut down yet. if (unlikely (ctx_terminated)) { errno = ETERM; return -1; } // Check whether endpoint address passed to the function is valid. if (unlikely (!addr_)) { errno = EINVAL; return -1; } // Process pending commands, if any, since there could be pending unprocessed process_own()'s // (from launch_child() for example) we're asked to terminate now. int rc = process_commands (0, false); if (unlikely (rc != 0)) return -1; // Find the endpoints range (if any) corresponding to the addr_ string. std::pair range = endpoints.equal_range (std::string (addr_)); if (range.first == range.second) return -1; for (endpoints_t::iterator it = range.first; it != range.second; ++it) term_child (it->second); endpoints.erase (range.first, range.second); return 0; } int zmq::socket_base_t::send (msg_t *msg_, int flags_) { // Check whether the library haven't been shut down yet. if (unlikely (ctx_terminated)) { errno = ETERM; return -1; } // Check whether message passed to the function is valid. if (unlikely (!msg_ || !msg_->check ())) { errno = EFAULT; return -1; } // Process pending commands, if any. int rc = process_commands (0, true); if (unlikely (rc != 0)) return -1; // Clear any user-visible flags that are set on the message. msg_->reset_flags (msg_t::more); // At this point we impose the flags on the message. if (flags_ & ZMQ_SNDMORE) msg_->set_flags (msg_t::more); // Try to send the message. rc = xsend (msg_, flags_); if (rc == 0) return 0; if (unlikely (errno != EAGAIN)) return -1; // In case of non-blocking send we'll simply propagate // the error - including EAGAIN - up the stack. if (flags_ & ZMQ_DONTWAIT || options.sndtimeo == 0) return -1; // Compute the time when the timeout should occur. // If the timeout is infite, don't care. int timeout = options.sndtimeo; uint64_t end = timeout < 0 ? 0 : (clock.now_ms () + timeout); // Oops, we couldn't send the message. Wait for the next // command, process it and try to send the message again. // If timeout is reached in the meantime, return EAGAIN. while (true) { if (unlikely (process_commands (timeout, false) != 0)) return -1; rc = xsend (msg_, flags_); if (rc == 0) break; if (unlikely (errno != EAGAIN)) return -1; if (timeout > 0) { timeout = (int) (end - clock.now_ms ()); if (timeout <= 0) { errno = EAGAIN; return -1; } } } return 0; } int zmq::socket_base_t::recv (msg_t *msg_, int flags_) { // Check whether the library haven't been shut down yet. if (unlikely (ctx_terminated)) { errno = ETERM; return -1; } // Check whether message passed to the function is valid. if (unlikely (!msg_ || !msg_->check ())) { errno = EFAULT; return -1; } // Get the message. int rc = xrecv (msg_, flags_); if (unlikely (rc != 0 && errno != EAGAIN)) return -1; // Once every inbound_poll_rate messages check for signals and process // incoming commands. This happens only if we are not polling altogether // because there are messages available all the time. If poll occurs, // ticks is set to zero and thus we avoid this code. // // Note that 'recv' uses different command throttling algorithm (the one // described above) from the one used by 'send'. This is because counting // ticks is more efficient than doing RDTSC all the time. if (++ticks == inbound_poll_rate) { if (unlikely (process_commands (0, false) != 0)) return -1; ticks = 0; } // If we have the message, return immediately. if (rc == 0) { extract_flags (msg_); return 0; } // If the message cannot be fetched immediately, there are two scenarios. // For non-blocking recv, commands are processed in case there's an // activate_reader command already waiting int a command pipe. // If it's not, return EAGAIN. if (flags_ & ZMQ_DONTWAIT || options.rcvtimeo == 0) { if (unlikely (process_commands (0, false) != 0)) return -1; ticks = 0; rc = xrecv (msg_, flags_); if (rc < 0) return rc; extract_flags (msg_); return 0; } // Compute the time when the timeout should occur. // If the timeout is infite, don't care. int timeout = options.rcvtimeo; uint64_t end = timeout < 0 ? 0 : (clock.now_ms () + timeout); // In blocking scenario, commands are processed over and over again until // we are able to fetch a message. bool block = (ticks != 0); while (true) { if (unlikely (process_commands (block ? timeout : 0, false) != 0)) return -1; rc = xrecv (msg_, flags_); if (rc == 0) { ticks = 0; break; } if (unlikely (errno != EAGAIN)) return -1; block = true; if (timeout > 0) { timeout = (int) (end - clock.now_ms ()); if (timeout <= 0) { errno = EAGAIN; return -1; } } } extract_flags (msg_); return 0; } int zmq::socket_base_t::close () { // Mark the socket as dead tag = 0xdeadbeef; // Transfer the ownership of the socket from this application thread // to the reaper thread which will take care of the rest of shutdown // process. send_reap (this); return 0; } bool zmq::socket_base_t::has_in () { return xhas_in (); } bool zmq::socket_base_t::has_out () { return xhas_out (); } void zmq::socket_base_t::start_reaping (poller_t *poller_) { // Plug the socket to the reaper thread. poller = poller_; handle = poller->add_fd (mailbox.get_fd (), this); poller->set_pollin (handle); // Initialise the termination and check whether it can be deallocated // immediately. terminate (); check_destroy (); } int zmq::socket_base_t::process_commands (int timeout_, bool throttle_) { int rc; command_t cmd; if (timeout_ != 0) { // If we are asked to wait, simply ask mailbox to wait. rc = mailbox.recv (&cmd, timeout_); } else { // If we are asked not to wait, check whether we haven't processed // commands recently, so that we can throttle the new commands. // Get the CPU's tick counter. If 0, the counter is not available. uint64_t tsc = zmq::clock_t::rdtsc (); // Optimised version of command processing - it doesn't have to check // for incoming commands each time. It does so only if certain time // elapsed since last command processing. Command delay varies // depending on CPU speed: It's ~1ms on 3GHz CPU, ~2ms on 1.5GHz CPU // etc. The optimisation makes sense only on platforms where getting // a timestamp is a very cheap operation (tens of nanoseconds). if (tsc && throttle_) { // Check whether TSC haven't jumped backwards (in case of migration // between CPU cores) and whether certain time have elapsed since // last command processing. If it didn't do nothing. if (tsc >= last_tsc && tsc - last_tsc <= max_command_delay) return 0; last_tsc = tsc; } // Check whether there are any commands pending for this thread. rc = mailbox.recv (&cmd, 0); } // Process all the commands available at the moment. while (true) { if (rc == -1 && errno == EAGAIN) break; if (rc == -1 && errno == EINTR) return -1; errno_assert (rc == 0); cmd.destination->process_command (cmd); rc = mailbox.recv (&cmd, 0); } if (ctx_terminated) { errno = ETERM; return -1; } return 0; } void zmq::socket_base_t::process_stop () { // Here, someone have called zmq_term while the socket was still alive. // We'll remember the fact so that any blocking call is interrupted and any // further attempt to use the socket will return ETERM. The user is still // responsible for calling zmq_close on the socket though! ctx_terminated = true; } void zmq::socket_base_t::process_bind (pipe_t *pipe_) { attach_pipe (pipe_); } void zmq::socket_base_t::process_term (int linger_) { // Unregister all inproc endpoints associated with this socket. // Doing this we make sure that no new pipes from other sockets (inproc) // will be initiated. unregister_endpoints (this); // Ask all attached pipes to terminate. for (pipes_t::size_type i = 0; i != pipes.size (); ++i) pipes [i]->terminate (false); register_term_acks ((int) pipes.size ()); // Continue the termination process immediately. own_t::process_term (linger_); } void zmq::socket_base_t::process_destroy () { destroyed = true; } int zmq::socket_base_t::xsetsockopt (int option_, const void *optval_, size_t optvallen_) { errno = EINVAL; return -1; } bool zmq::socket_base_t::xhas_out () { return false; } int zmq::socket_base_t::xsend (msg_t *msg_, int flags_) { errno = ENOTSUP; return -1; } bool zmq::socket_base_t::xhas_in () { return false; } int zmq::socket_base_t::xrecv (msg_t *msg_, int flags_) { errno = ENOTSUP; return -1; } void zmq::socket_base_t::xread_activated (pipe_t *pipe_) { zmq_assert (false); } void zmq::socket_base_t::xwrite_activated (pipe_t *pipe_) { zmq_assert (false); } void zmq::socket_base_t::xhiccuped (pipe_t *pipe_) { zmq_assert (false); } void zmq::socket_base_t::in_event () { // This function is invoked only once the socket is running in the context // of the reaper thread. Process any commands from other threads/sockets // that may be available at the moment. Ultimately, the socket will // be destroyed. process_commands (0, false); check_destroy (); } void zmq::socket_base_t::out_event () { zmq_assert (false); } void zmq::socket_base_t::timer_event (int id_) { zmq_assert (false); } void zmq::socket_base_t::check_destroy () { // If the object was already marked as destroyed, finish the deallocation. if (destroyed) { // Remove the socket from the reaper's poller. poller->rm_fd (handle); // Remove the socket from the context. destroy_socket (this); // Notify the reaper about the fact. send_reaped (); // Deallocate. own_t::process_destroy (); } } void zmq::socket_base_t::read_activated (pipe_t *pipe_) { xread_activated (pipe_); } void zmq::socket_base_t::write_activated (pipe_t *pipe_) { xwrite_activated (pipe_); } void zmq::socket_base_t::hiccuped (pipe_t *pipe_) { xhiccuped (pipe_); } void zmq::socket_base_t::terminated (pipe_t *pipe_) { // Notify the specific socket type about the pipe termination. xterminated (pipe_); // Remove the pipe from the list of attached pipes and confirm its // termination if we are already shutting down. pipes.erase (pipe_); if (is_terminating ()) unregister_term_ack (); } void zmq::socket_base_t::extract_flags (msg_t *msg_) { // Test whether IDENTITY flag is valid for this socket type. if (unlikely (msg_->flags () & msg_t::identity)) zmq_assert (options.recv_identity); // Remove MORE flag. rcvmore = msg_->flags () & msg_t::more ? true : false; } void zmq::socket_base_t::monitor_event (int event_, ...) { va_list args; va_start (args, event_); get_ctx ()->monitor_event (this, event_, args); va_end (args); }