Another take on LIBZMQ-568 to allow filtering IPC connections, this time
using ZAP. This change is backward compatible. If the
ZMQ_ZAP_IPC_CREDS option is set, the user, group, and process IDs of the
peer process are appended to the address (separated by colons) of a ZAP
request; otherwise, nothing changes. See LIBZMQ-568 and zmq_setsockopt
documentation for more information.
* ZMQ_REQ_STRICT was negative option (default 1) which goes against
the standard, where defaults are zero. I renamed this to
ZMQ_REQ_RELAXED.
* ZMQ_REQ_REQUEST_IDS felt clumsy and describes the technical solution
rather than the problem/requirement. I changed to ZMQ_REQ_CORRELATE
which seems more explicit.
* This is passed to the ZAP handler in the 'domain' field
* If not set, or empty, then NULL security does not call the ZAP handler
* This resolves the phantom ZAP request syndrome seen with sockets where
security was never intended (e.g. in test cases)
* This means if you install a ZAP handler, it will not get any requests
for new connections until you take some explicit action, which can be
setting a username/password for PLAIN, a key for CURVE, or the domain
for NULL.
This allows making a new request on a REQ socket by sending a new
message. Without the option set, calling send() after the first message
is done will continue to return an EFSM error.
It's useful for when a REQ is not getting a response. Previously that
meant creating a new socket or switching to DEALER.
* Documentation:
The default behavior of REQ sockets is to rely on the ordering of messages
to match requests and responses and that is usually sufficient. When this option
is set to 1, the REQ socket will prefix outgoing messages with an extra frame
containing a request id. That means the full message is (request id, 0,
user frames...). The REQ socket will discard all incoming messages that don't
begin with these two frames.
* Behavior change: When a REQ socket gets an invalid reply, it used to
discard the message and return EAGAIN. REQ sockets still discard
invalid messages, but keep looking at the next one automatically
until a good one is found or there are no more messages.
* Add test_req_request_ids.
The use of binary for CURVE keys is painful; you cannot easily copy
these in e.g. email, or use them directly in source code. There are
various encoding possibilities. Base16 and Base64 are not optimal.
Ascii85 is not safe for source (it generates quotes and escapes).
So, I've designed a new Base85 encoding, Z85, which is safe to use
in code and elsewhere, and I've modified libzmq to use this where
it also uses binary keys (in get/setsockopt).
Very simply, if you use a 32-byte value, it's Base256 (binary),
and if you use a 40-byte value, it's Base85 (Z85).
I've put the Z85 codec into z85_codec.hpp, it's not elegant C++
but it is minimal and it works. Feel free to rewrap as a real class
if this annoys you.
- designed for TCP clients and servers
- added HTTP client / server example in tests/test_stream.cpp
- same as ZMQ_ROUTER + ZMQ_ROUTER_RAW + ZMQ_ROUTER_MANDATORY
- includes b893ce set ZMQ_IDENTITY on outgoing connect
- deprecates ZMQ_ROUTER_RAW
- ZMQ_CURVE_PUBLICKEY for clients and servers
- ZMQ_CURVE_SECRETKEY for clients
- ZMQ_CURVE_SERVERKEY for clients
- ZMQ_CURVE_SERVER for servers
- added tools/curve_keygen.c as example
- updated man pages
* ZMQ_PLAIN_SERVER, ZMQ_PLAIN_USERNAME, ZMQ_PLAIN_PASSWORD options
* Man page changes to zmq_setsockopt and zmq_getsockopt
* Man pages for ZMQ_NULL, ZMQ_PLAIN, and ZMQ_CURVE
* Test program test_security
contributors and doesn't reflect the real process. I've taken out all named
authors and referred to the contribution policy. Hopefully this will improve
the contributions to the man pages.
This patch, salvaged from a trainwreck accidental merge earlier, adds a
new sockopt, ZMQ_DELAY_ATTACH_ON_CONNECT which prevents a end point
being available to push messages to until it has fully connected, making
connect work more like bind. This also applies to reconnecting sockets,
which may cause message loss of in-queue messages, so it is sensible to
use this in conjunction with a low HWM and potentially an alternative
acknowledgement path.
Notes on most of the individual commits can be found the repository log.