* This is passed to the ZAP handler in the 'domain' field
* If not set, or empty, then NULL security does not call the ZAP handler
* This resolves the phantom ZAP request syndrome seen with sockets where
security was never intended (e.g. in test cases)
* This means if you install a ZAP handler, it will not get any requests
for new connections until you take some explicit action, which can be
setting a username/password for PLAIN, a key for CURVE, or the domain
for NULL.
* Command names changed from null terminated to length-specified
* Command frames use the correct flag (bit 2)
* test_stream acts as test case for command frames
* Some code cleanups
- if ZAP server returns anything except 200, connection is closed
- all security tests now pass correctly
- test_security_curve now does proper client key authentication using test key
- test_security_plain now does proper password authentication
- Split off NULL security check from PLAIN
- Cleaned up test_linger code a little
- Got all tests to pass, added TODOs for outstanding issues
- Added ZAP authentication for NULL test case
- NULL mechanism was not passing server identity - fixed
- cleaned up test_security_plain and removed option double-checks (made code ugly)
- lowered timeout on expect_bounce_fail to 150 msec to speed up checks
- removed all sleeps from test_fork and simplified code (it still passes :-)
This change adds the socket identity infomartion from the socket to the
zap frames. In doing this the ZAP is able preform different operations
based on different sockets. This is not compaitable with the current ZAP
RFC, but that can be updated. As the ZAP rfc is currently draft for I
did not change the version number.
Tests also modified and passing.
The use of binary for CURVE keys is painful; you cannot easily copy
these in e.g. email, or use them directly in source code. There are
various encoding possibilities. Base16 and Base64 are not optimal.
Ascii85 is not safe for source (it generates quotes and escapes).
So, I've designed a new Base85 encoding, Z85, which is safe to use
in code and elsewhere, and I've modified libzmq to use this where
it also uses binary keys (in get/setsockopt).
Very simply, if you use a 32-byte value, it's Base256 (binary),
and if you use a 40-byte value, it's Base85 (Z85).
I've put the Z85 codec into z85_codec.hpp, it's not elegant C++
but it is minimal and it works. Feel free to rewrap as a real class
if this annoys you.