Merge pull request #3286 from ssbl/master

Problem: potentially large memory footprint of trie as number of subscriptions increases (issue #1400)
This commit is contained in:
Luca Boccassi 2018-10-31 14:45:15 +00:00 committed by GitHub
commit fc4115887c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 1071 additions and 3 deletions

View File

@ -661,6 +661,7 @@ set(cxx-sources
tcp_listener.cpp
thread.cpp
trie.cpp
radix_tree.cpp
v1_decoder.cpp
v1_encoder.cpp
v2_decoder.cpp

View File

@ -159,6 +159,8 @@ src_libzmq_la_SOURCES = \
src/push.hpp \
src/radio.cpp \
src/radio.hpp \
src/radix_tree.cpp \
src/radix_tree.hpp \
src/random.cpp \
src/random.hpp \
src/raw_decoder.cpp \
@ -948,7 +950,8 @@ test_apps += \
unittests/unittest_ypipe \
unittests/unittest_mtrie \
unittests/unittest_ip_resolver \
unittests/unittest_udp_address
unittests/unittest_udp_address \
unittests/unittest_radix_tree
unittests_unittest_poller_SOURCES = unittests/unittest_poller.cpp
unittests_unittest_poller_CPPFLAGS = -I$(top_srcdir)/src ${UNITY_CPPFLAGS} $(CODE_COVERAGE_CPPFLAGS)
@ -989,6 +992,14 @@ unittests_unittest_udp_address_LDADD = $(top_builddir)/src/.libs/libzmq.a \
${src_libzmq_la_LIBADD} \
${UNITY_LIBS} \
$(CODE_COVERAGE_LDFLAGS)
unittests_unittest_radix_tree_SOURCES = unittests/unittest_radix_tree.cpp
unittests_unittest_radix_tree_CPPFLAGS = -I$(top_srcdir)/src ${UNITY_CPPFLAGS} $(CODE_COVERAGE_CPPFLAGS)
unittests_unittest_radix_tree_CXXFLAGS = $(CODE_COVERAGE_CXXFLAGS)
unittests_unittest_radix_tree_LDADD = $(top_builddir)/src/.libs/libzmq.a \
${src_libzmq_la_LIBADD} \
${UNITY_LIBS} \
$(CODE_COVERAGE_LDFLAGS)
endif
check_PROGRAMS = ${test_apps}

17
RELICENSE/ssbl.md Normal file
View File

@ -0,0 +1,17 @@
# Permission to Relicense under MPLv2 or any other OSI approved license chosen by the current ZeroMQ BDFL
This is a statement by Shubham Lagwankar that grants permission to
relicense its copyrights in the libzmq C++ library (ZeroMQ) under the
Mozilla Public License v2 (MPLv2) or any other Open Source Initiative
approved license chosen by the current ZeroMQ BDFL (Benevolent
Dictator for Life).
A portion of the commits made by the Github handle "ssbl", with
commit author "Shubham Lagwankar <shubhu105@gmail.com>", are
copyright of Shubham Lagwankar. This document hereby grants the libzmq
project team to relicense libzmq, including all past, present and
future contributions of the author listed above.
Shubham Lagwankar
2018/10/30

578
src/radix_tree.cpp Normal file
View File

@ -0,0 +1,578 @@
/*
Copyright (c) 2018 Contributors as noted in the AUTHORS file
This file is part of libzmq, the ZeroMQ core engine in C++.
libzmq is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
As a special exception, the Contributors give you permission to link
this library with independent modules to produce an executable,
regardless of the license terms of these independent modules, and to
copy and distribute the resulting executable under terms of your choice,
provided that you also meet, for each linked independent module, the
terms and conditions of the license of that module. An independent
module is a module which is not derived from or based on this library.
If you modify this library, you must extend this exception to your
version of the library.
libzmq is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "precompiled.hpp"
#include "macros.hpp"
#include "err.hpp"
#include "radix_tree.hpp"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
node::node (unsigned char *data) : data_ (data)
{
}
uint32_t node::refcount ()
{
uint32_t u32;
memcpy (&u32, data_, sizeof (u32));
return u32;
}
void node::set_refcount (uint32_t value)
{
memcpy (data_, &value, sizeof (value));
}
uint32_t node::prefix_length ()
{
uint32_t u32;
memcpy (&u32, data_ + sizeof (uint32_t), sizeof (u32));
return u32;
}
void node::set_prefix_length (uint32_t value)
{
memcpy (data_ + sizeof (value), &value, sizeof (value));
}
uint32_t node::edgecount ()
{
uint32_t u32;
memcpy (&u32, data_ + 2 * sizeof (uint32_t), sizeof (u32));
return u32;
}
void node::set_edgecount (uint32_t value)
{
memcpy (data_ + 2 * sizeof (value), &value, sizeof (value));
}
unsigned char *node::prefix ()
{
return data_ + 3 * sizeof (uint32_t);
}
void node::set_prefix (unsigned char const *bytes)
{
memcpy (prefix (), bytes, prefix_length ());
}
unsigned char *node::first_bytes ()
{
return prefix () + prefix_length ();
}
void node::set_first_bytes (unsigned char const *bytes)
{
memcpy (first_bytes (), bytes, edgecount ());
}
unsigned char node::first_byte_at (size_t i)
{
zmq_assert (i < edgecount ());
return first_bytes ()[i];
}
void node::set_first_byte_at (size_t i, unsigned char byte)
{
zmq_assert (i < edgecount ());
first_bytes ()[i] = byte;
}
unsigned char *node::node_ptrs ()
{
return prefix () + prefix_length () + edgecount ();
}
void node::set_node_ptrs (unsigned char const *ptrs)
{
memcpy (node_ptrs (), ptrs, edgecount () * sizeof (void *));
}
node node::node_at (size_t i)
{
zmq_assert (i < edgecount ());
unsigned char *data;
memcpy (&data, node_ptrs () + i * sizeof (void *), sizeof (data));
return node (data);
}
void node::set_node_at (size_t i, node n)
{
zmq_assert (i < edgecount ());
memcpy (node_ptrs () + i * sizeof (void *), &n.data_, sizeof (n.data_));
}
void node::set_edge_at (size_t i, unsigned char byte, node n)
{
set_first_byte_at (i, byte);
set_node_at (i, n);
}
bool node::operator== (node other) const
{
return data_ == other.data_;
}
bool node::operator!= (node other) const
{
return !(*this == other);
}
void node::resize (size_t prefix_length, size_t edgecount)
{
size_t sz =
3 * sizeof (uint32_t) + prefix_length + edgecount * (1 + sizeof (void *));
unsigned char *new_data =
static_cast<unsigned char *> (realloc (data_, sz));
zmq_assert (new_data);
data_ = new_data;
set_prefix_length (static_cast<uint32_t> (prefix_length));
set_edgecount (static_cast<uint32_t> (edgecount));
}
node make_node (size_t refs, size_t bytes, size_t edges)
{
size_t size = 3 * sizeof (uint32_t) + bytes + edges * (1 + sizeof (void *));
unsigned char *data = static_cast<unsigned char *> (malloc (size));
zmq_assert (data);
node n (data);
n.set_refcount (static_cast<uint32_t> (refs));
n.set_prefix_length (static_cast<uint32_t> (bytes));
n.set_edgecount (static_cast<uint32_t> (edges));
return n;
}
// ----------------------------------------------------------------------
zmq::radix_tree::radix_tree () : root_ (make_node (0, 0, 0)), size_ (0)
{
}
static void free_nodes (node n)
{
for (size_t i = 0; i < n.edgecount (); ++i)
free_nodes (n.node_at (i));
free (n.data_);
}
zmq::radix_tree::~radix_tree ()
{
free_nodes (root_);
}
match_result::match_result (size_t i,
size_t j,
size_t edge_index,
size_t gp_edge_index,
node current,
node parent,
node grandparent) :
nkey (i),
nprefix (j),
edge_index (edge_index),
gp_edge_index (gp_edge_index),
current_node (current),
parent_node (parent),
grandparent_node (grandparent)
{
}
inline match_result zmq::radix_tree::match (const unsigned char *key,
size_t size,
bool check = false) const
{
zmq_assert (key);
size_t i = 0; // Number of characters matched in key.
size_t j = 0; // Number of characters matched in current node.
size_t edge_idx = 0; // Index of outgoing edge from the parent node.
size_t gp_edge_idx = 0; // Index of outgoing edge from grandparent.
node current_node = root_;
node parent_node = current_node;
node grandparent_node = current_node;
while (current_node.prefix_length () > 0 || current_node.edgecount () > 0) {
for (j = 0; j < current_node.prefix_length () && i < size; ++j, ++i) {
if (current_node.prefix ()[j] != key[i])
break;
}
// Even if a prefix of the key matches and we're doing a
// lookup, this means we've found a matching subscription.
if (check && j == current_node.prefix_length ()
&& current_node.refcount () > 0) {
i = size;
break;
}
// There was a mismatch or we've matched the whole key, so
// there's nothing more to do.
if (j != current_node.prefix_length () || i == size)
break;
// We need to match the rest of the key. Check if there's an
// outgoing edge from this node.
node next_node = current_node;
for (size_t k = 0; k < current_node.edgecount (); ++k) {
if (current_node.first_byte_at (k) == key[i]) {
gp_edge_idx = edge_idx;
edge_idx = k;
next_node = current_node.node_at (k);
break;
}
}
if (next_node == current_node)
break; // No outgoing edge.
grandparent_node = parent_node;
parent_node = current_node;
current_node = next_node;
}
return match_result (i, j, edge_idx, gp_edge_idx, current_node, parent_node,
grandparent_node);
}
bool zmq::radix_tree::add (const unsigned char *key, size_t size)
{
match_result result = match (key, size);
size_t i = result.nkey;
size_t j = result.nprefix;
size_t edge_idx = result.edge_index;
node current_node = result.current_node;
node parent_node = result.parent_node;
if (i != size) {
// Not all characters match, we might have to split the node.
if (i == 0 || j == current_node.prefix_length ()) {
// The mismatch is at one of the outgoing edges, so we
// create an edge from the current node to a new leaf node
// that has the rest of the key as the prefix.
node key_node = make_node (1, size - i, 0);
key_node.set_prefix (key + i);
// Reallocate for one more edge.
current_node.resize (current_node.prefix_length (),
current_node.edgecount () + 1);
// Make room for the new edge. We need to shift the chunk
// of node pointers one byte to the right. Since resize()
// increments the edgecount by 1, node_ptrs() tells us the
// destination address. The chunk of node pointers starts
// at one byte to the left of this destination.
//
// Since the regions can overlap, we use memmove.
memmove (current_node.node_ptrs (), current_node.node_ptrs () - 1,
(current_node.edgecount () - 1) * sizeof (void *));
// Add an edge to the new node.
current_node.set_edge_at (current_node.edgecount () - 1, key[i],
key_node);
// We need to update all pointers to the current node
// after the call to resize().
if (current_node.prefix_length () == 0)
root_.data_ = current_node.data_;
else
parent_node.set_node_at (edge_idx, current_node);
++size_;
return true;
}
// There was a mismatch, so we need to split this node.
//
// Create two nodes that will be reachable from the parent.
// One node will have the rest of the characters from the key,
// and the other node will have the rest of the characters
// from the current node's prefix.
node key_node = make_node (1, size - i, 0);
node split_node = make_node (current_node.refcount (),
current_node.prefix_length () - j,
current_node.edgecount ());
// Copy the prefix chunks to the new nodes.
key_node.set_prefix (key + i);
split_node.set_prefix (current_node.prefix () + j);
// Copy the current node's edges to the new node.
split_node.set_first_bytes (current_node.first_bytes ());
split_node.set_node_ptrs (current_node.node_ptrs ());
// Resize the current node to accommodate a prefix comprising
// the matched characters and 2 outgoing edges to the above
// nodes. Set the refcount to 0 since this node doesn't hold a
// key.
current_node.resize (j, 2);
current_node.set_refcount (0);
// Add links to the new nodes. We don't need to copy the
// prefix since resize() retains it in the current node.
current_node.set_edge_at (0, key_node.prefix ()[0], key_node);
current_node.set_edge_at (1, split_node.prefix ()[0], split_node);
++size_;
parent_node.set_node_at (edge_idx, current_node);
return true;
}
// All characters in the key match, but we still might need to split.
if (j != current_node.prefix_length ()) {
// All characters in the key match, but not all characters
// from the current node's prefix match.
// Create a node that contains the rest of the characters from
// the current node's prefix and the outgoing edges from the
// current node.
node split_node = make_node (current_node.refcount (),
current_node.prefix_length () - j,
current_node.edgecount ());
split_node.set_prefix (current_node.prefix () + j);
split_node.set_first_bytes (current_node.first_bytes ());
split_node.set_node_ptrs (current_node.node_ptrs ());
// Resize the current node to hold only the matched characters
// from its prefix and one edge to the new node.
current_node.resize (j, 1);
// Add an edge to the split node and set the refcount to 1
// since this key wasn't inserted earlier. We don't need to
// set the prefix because the first j bytes in the prefix are
// preserved by resize().
current_node.set_edge_at (0, split_node.prefix ()[0], split_node);
current_node.set_refcount (1);
++size_;
parent_node.set_node_at (edge_idx, current_node);
return true;
}
zmq_assert (i == size);
zmq_assert (j == current_node.prefix_length ());
++size_;
current_node.set_refcount (current_node.refcount () + 1);
return current_node.refcount () == 1;
}
bool zmq::radix_tree::rm (const unsigned char *key, size_t size)
{
match_result result = match (key, size);
size_t i = result.nkey;
size_t j = result.nprefix;
size_t edge_idx = result.edge_index;
size_t gp_edge_idx = result.gp_edge_index;
node current_node = result.current_node;
node parent_node = result.parent_node;
node grandparent_node = result.grandparent_node;
if (i != size || j != current_node.prefix_length ()
|| current_node.refcount () == 0)
return false;
current_node.set_refcount (current_node.refcount () - 1);
--size_;
if (current_node.refcount () > 0)
return false;
// Don't delete the root node.
if (current_node == root_)
return true;
size_t outgoing_edges = current_node.edgecount ();
if (outgoing_edges > 1)
// This node can't be merged with any other node, so there's
// nothing more to do.
return true;
if (outgoing_edges == 1) {
// Merge this node with the single child node.
node child = current_node.node_at (0);
// Make room for the child node's prefix and edges. We need to
// keep the old prefix length since resize() will overwrite
// it.
uint32_t old_prefix_length = current_node.prefix_length ();
current_node.resize (old_prefix_length + child.prefix_length (),
child.edgecount ());
// Append the child node's prefix to the current node.
memcpy (current_node.prefix () + old_prefix_length, child.prefix (),
child.prefix_length ());
// Copy the rest of child node's data to the current node.
current_node.set_first_bytes (child.first_bytes ());
current_node.set_node_ptrs (child.node_ptrs ());
current_node.set_refcount (child.refcount ());
free (child.data_);
parent_node.set_node_at (edge_idx, current_node);
return true;
}
if (parent_node.edgecount () == 2 && parent_node.refcount () == 0
&& parent_node != root_) {
// Removing this node leaves the parent with one child.
// If the parent doesn't hold a key or if it isn't the root,
// we can merge it with its single child node.
zmq_assert (edge_idx < 2);
node other_child = parent_node.node_at (!edge_idx);
// Make room for the child node's prefix and edges. We need to
// keep the old prefix length since resize() will overwrite
// it.
uint32_t old_prefix_length = parent_node.prefix_length ();
parent_node.resize (old_prefix_length + other_child.prefix_length (),
other_child.edgecount ());
// Append the child node's prefix to the current node.
memcpy (parent_node.prefix () + old_prefix_length,
other_child.prefix (), other_child.prefix_length ());
// Copy the rest of child node's data to the current node.
parent_node.set_first_bytes (other_child.first_bytes ());
parent_node.set_node_ptrs (other_child.node_ptrs ());
parent_node.set_refcount (other_child.refcount ());
free (current_node.data_);
free (other_child.data_);
grandparent_node.set_node_at (gp_edge_idx, parent_node);
return true;
}
// This is a leaf node that doesn't leave its parent with one
// outgoing edge. Remove the outgoing edge to this node from the
// parent.
zmq_assert (outgoing_edges == 0);
// Move the first byte and node pointer to the back of the byte
// and pointer chunks respectively.
size_t last_idx = parent_node.edgecount () - 1;
unsigned char last_byte = parent_node.first_byte_at (last_idx);
node last_ptr = parent_node.node_at (last_idx);
parent_node.set_edge_at (edge_idx, last_byte, last_ptr);
// Move the chunk of pointers one byte to the left, effectively
// deleting the last byte in the region of first bytes by
// overwriting it.
memmove (parent_node.node_ptrs () - 1, parent_node.node_ptrs (),
parent_node.edgecount () * sizeof (void *));
// Shrink the parent node to the new size, which "deletes" the
// last pointer in the chunk of node pointers.
parent_node.resize (parent_node.prefix_length (),
parent_node.edgecount () - 1);
// Nothing points to this node now, so we can reclaim it.
free (current_node.data_);
if (parent_node.prefix_length () == 0)
root_.data_ = parent_node.data_;
else
grandparent_node.set_node_at (gp_edge_idx, parent_node);
return true;
}
bool zmq::radix_tree::check (const unsigned char *key, size_t size)
{
if (root_.refcount () > 0)
return true;
match_result result = match (key, size, true);
return result.nkey == size
&& result.nprefix == result.current_node.prefix_length ()
&& result.current_node.refcount () > 0;
}
static void
visit_keys (node n,
unsigned char **buffer,
size_t buffer_size,
size_t maxbuffer_size,
void (*func) (unsigned char *data, size_t size, void *arg),
void *arg)
{
if (buffer_size >= maxbuffer_size) {
maxbuffer_size += 256;
*buffer =
static_cast<unsigned char *> (realloc (*buffer, maxbuffer_size));
zmq_assert (*buffer);
}
for (size_t i = 0; i < n.prefix_length (); ++i)
(*buffer)[buffer_size++] = n.prefix ()[i];
if (n.refcount () > 0)
func (*buffer, buffer_size, arg);
for (size_t i = 0; i < n.edgecount (); ++i)
visit_keys (n.node_at (i), buffer, buffer_size, maxbuffer_size, func,
arg);
buffer_size -= n.prefix_length ();
}
void zmq::radix_tree::apply (
void (*func) (unsigned char *data, size_t size, void *arg), void *arg)
{
unsigned char *buffer = NULL;
visit_keys (root_, &buffer, 0, 0, func, arg);
free (buffer);
}
size_t zmq::radix_tree::size () const
{
return size_;
}
static void visit_child (node child_node, size_t level)
{
zmq_assert (level > 0);
for (size_t i = 0; i < 4 * (level - 1) + level; ++i)
putchar (' ');
printf ("`-> ");
for (uint32_t i = 0; i < child_node.prefix_length (); ++i)
printf ("%c", child_node.prefix ()[i]);
if (child_node.refcount () > 0)
printf (" [*]");
printf ("\n");
for (uint32_t i = 0; i < child_node.edgecount (); ++i)
visit_child (child_node.node_at (i), level + 1);
}
void zmq::radix_tree::print ()
{
puts ("[root]");
for (uint32_t i = 0; i < root_.edgecount (); ++i)
visit_child (root_.node_at (i), 1);
}

148
src/radix_tree.hpp Normal file
View File

@ -0,0 +1,148 @@
/*
Copyright (c) 2018 Contributors as noted in the AUTHORS file
This file is part of libzmq, the ZeroMQ core engine in C++.
libzmq is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
As a special exception, the Contributors give you permission to link
this library with independent modules to produce an executable,
regardless of the license terms of these independent modules, and to
copy and distribute the resulting executable under terms of your choice,
provided that you also meet, for each linked independent module, the
terms and conditions of the license of that module. An independent
module is a module which is not derived from or based on this library.
If you modify this library, you must extend this exception to your
version of the library.
libzmq is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef RADIX_TREE_HPP
#define RADIX_TREE_HPP
#include <stddef.h>
#include "stdint.hpp"
// Wrapper type for a node's data layout.
//
// There are 3 32-bit unsigned integers that act as a header. These
// integers represent the following values in this order:
//
// (1) The reference count of the key held by the node. This is 0 if
// the node doesn't hold a key.
//
// (2) The number of characters in the node's prefix. The prefix is a
// part of one or more keys in the tree, e.g. the prefix of each node
// in a trie consists of a single character.
//
// (3) The number of outgoing edges from this node.
//
// The rest of the layout consists of 3 chunks in this order:
//
// (1) The node's prefix as a sequence of one or more bytes. The root
// node always has an empty prefix, unlike other nodes in the tree.
//
// (2) The first byte of the prefix of each of this node's children.
//
// (3) The pointer to each child node.
//
// The link to each child is looked up using its index, e.g. the child
// with index 0 will have its first byte and node pointer at the start
// of the chunk of first bytes and node pointers respectively.
struct node
{
unsigned char *data_;
explicit node (unsigned char *data);
bool operator== (node other) const;
bool operator!= (node other) const;
inline uint32_t refcount ();
inline uint32_t prefix_length ();
inline uint32_t edgecount ();
inline unsigned char *prefix ();
inline unsigned char *first_bytes ();
inline unsigned char first_byte_at (size_t i);
inline unsigned char *node_ptrs ();
inline node node_at (size_t i);
inline void set_refcount (uint32_t value);
inline void set_prefix_length (uint32_t value);
inline void set_edgecount (uint32_t value);
inline void set_prefix (const unsigned char *prefix);
inline void set_first_bytes (const unsigned char *bytes);
inline void set_first_byte_at (size_t i, unsigned char byte);
inline void set_node_ptrs (unsigned char const *ptrs);
inline void set_node_at (size_t i, node n);
inline void set_edge_at (size_t i, unsigned char byte, node n);
void resize (size_t prefix_length, size_t edgecount);
};
node make_node (size_t refcount, size_t prefix_length, size_t nedges);
struct match_result
{
size_t nkey;
size_t nprefix;
size_t edge_index;
size_t gp_edge_index;
node current_node;
node parent_node;
node grandparent_node;
match_result (size_t i,
size_t j,
size_t edge_index,
size_t gp_edge_index,
node current,
node parent,
node grandparent);
};
namespace zmq
{
class radix_tree
{
public:
radix_tree ();
~radix_tree ();
// Add key to the tree. Returns true if this was a new key rather
// than a duplicate.
bool add (const unsigned char *prefix_, size_t size_);
// Remove key from the tree. Returns true if he item is acually
// removed from the tree.
bool rm (const unsigned char *prefix_, size_t size_);
// Check whether particular key is in the tree.
bool check (const unsigned char *prefix, size_t size_);
// Apply the function supplied to each key in the tree.
void apply (void (*func) (unsigned char *data_, size_t size_, void *arg_),
void *arg);
void print ();
size_t size () const;
private:
match_result
match (const unsigned char *key, size_t size, bool check) const;
node root_;
size_t size_;
};
}
#endif

View File

@ -34,7 +34,7 @@
#include "session_base.hpp"
#include "dist.hpp"
#include "fq.hpp"
#include "trie.hpp"
#include "radix_tree.hpp"
namespace zmq
{
@ -78,7 +78,7 @@ class xsub_t : public socket_base_t
dist_t _dist;
// The repository of subscriptions.
trie_t _subscriptions;
radix_tree _subscriptions;
// If true, 'message' contains a matching message to return on the
// next recv call.

View File

@ -7,6 +7,7 @@ set(unittests
unittest_mtrie
unittest_ip_resolver
unittest_udp_address
unittest_radix_tree
)
#if(ENABLE_DRAFTS)

View File

@ -0,0 +1,312 @@
/*
Copyright (c) 2018 Contributors as noted in the AUTHORS file
This file is part of 0MQ.
0MQ is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
0MQ is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "../tests/testutil.hpp"
#include <radix_tree.hpp>
#include <stdint.hpp>
#include <set>
#include <string>
#include <string.h>
#include <unity.h>
#include <vector>
void setUp ()
{
}
void tearDown ()
{
}
bool tree_add (zmq::radix_tree &tree, const std::string &key)
{
return tree.add (reinterpret_cast<const unsigned char *> (key.data ()),
key.size ());
}
bool tree_rm (zmq::radix_tree &tree, const std::string &key)
{
return tree.rm (reinterpret_cast<const unsigned char *> (key.data ()),
key.size ());
}
bool tree_check (zmq::radix_tree &tree, const std::string &key)
{
return tree.check (reinterpret_cast<const unsigned char *> (key.data ()),
key.size ());
}
void test_empty ()
{
zmq::radix_tree tree;
TEST_ASSERT_TRUE (tree.size () == 0);
}
void test_add_single_entry ()
{
zmq::radix_tree tree;
TEST_ASSERT_TRUE (tree_add (tree, "foo"));
}
void test_add_same_entry_twice ()
{
zmq::radix_tree tree;
TEST_ASSERT_TRUE (tree_add (tree, "test"));
TEST_ASSERT_FALSE (tree_add (tree, "test"));
}
void test_rm_when_empty ()
{
zmq::radix_tree tree;
TEST_ASSERT_FALSE (tree_rm (tree, "test"));
}
void test_rm_single_entry ()
{
zmq::radix_tree tree;
tree_add (tree, "temporary");
TEST_ASSERT_TRUE (tree_rm (tree, "temporary"));
}
void test_rm_unique_entry_twice ()
{
zmq::radix_tree tree;
tree_add (tree, "test");
TEST_ASSERT_TRUE (tree_rm (tree, "test"));
TEST_ASSERT_FALSE (tree_rm (tree, "test"));
}
void test_rm_duplicate_entry ()
{
zmq::radix_tree tree;
tree_add (tree, "test");
tree_add (tree, "test");
TEST_ASSERT_FALSE (tree_rm (tree, "test"));
TEST_ASSERT_TRUE (tree_rm (tree, "test"));
}
void test_rm_common_prefix ()
{
zmq::radix_tree tree;
tree_add (tree, "checkpoint");
tree_add (tree, "checklist");
TEST_ASSERT_FALSE (tree_rm (tree, "check"));
}
void test_rm_common_prefix_entry ()
{
zmq::radix_tree tree;
tree_add (tree, "checkpoint");
tree_add (tree, "checklist");
tree_add (tree, "check");
TEST_ASSERT_TRUE (tree_rm (tree, "check"));
}
void test_rm_null_entry ()
{
zmq::radix_tree tree;
tree_add (tree, "");
TEST_ASSERT_TRUE (tree_rm (tree, ""));
}
void test_check_empty ()
{
zmq::radix_tree tree;
TEST_ASSERT_FALSE (tree_check (tree, "foo"));
}
void test_check_added_entry ()
{
zmq::radix_tree tree;
tree_add (tree, "entry");
TEST_ASSERT_TRUE (tree_check (tree, "entry"));
}
void test_check_common_prefix ()
{
zmq::radix_tree tree;
tree_add (tree, "introduce");
tree_add (tree, "introspect");
TEST_ASSERT_FALSE (tree_check (tree, "intro"));
}
void test_check_prefix ()
{
zmq::radix_tree tree;
tree_add (tree, "toasted");
TEST_ASSERT_FALSE (tree_check (tree, "toast"));
TEST_ASSERT_FALSE (tree_check (tree, "toaste"));
TEST_ASSERT_FALSE (tree_check (tree, "toaster"));
}
void test_check_nonexistent_entry ()
{
zmq::radix_tree tree;
tree_add (tree, "red");
TEST_ASSERT_FALSE (tree_check (tree, "blue"));
}
void test_check_query_longer_than_entry ()
{
zmq::radix_tree tree;
tree_add (tree, "foo");
TEST_ASSERT_TRUE (tree_check (tree, "foobar"));
}
void test_check_null_entry_added ()
{
zmq::radix_tree tree;
tree_add (tree, "");
TEST_ASSERT_TRUE (tree_check (tree, "all queries return true"));
}
void test_size ()
{
zmq::radix_tree tree;
// Adapted from the example on wikipedia.
std::vector<std::string> keys;
keys.push_back ("tester");
keys.push_back ("water");
keys.push_back ("slow");
keys.push_back ("slower");
keys.push_back ("test");
keys.push_back ("team");
keys.push_back ("toast");
for (size_t i = 0; i < keys.size (); ++i)
TEST_ASSERT_TRUE (tree_add (tree, keys[i]));
TEST_ASSERT_TRUE (tree.size () == keys.size ());
for (size_t i = 0; i < keys.size (); ++i)
TEST_ASSERT_FALSE (tree_add (tree, keys[i]));
TEST_ASSERT_TRUE (tree.size () == 2 * keys.size ());
for (size_t i = 0; i < keys.size (); ++i)
TEST_ASSERT_FALSE (tree_rm (tree, keys[i]));
TEST_ASSERT_TRUE (tree.size () == keys.size ());
for (size_t i = 0; i < keys.size (); ++i)
TEST_ASSERT_TRUE (tree_rm (tree, keys[i]));
TEST_ASSERT_TRUE (tree.size () == 0);
}
void return_key (unsigned char *data, size_t size, void *arg)
{
std::vector<std::string> *vec =
reinterpret_cast<std::vector<std::string> *> (arg);
std::string key;
for (size_t i = 0; i < size; ++i)
key.push_back (static_cast<char> (data[i]));
vec->push_back (key);
}
void test_apply ()
{
zmq::radix_tree tree;
std::set<std::string> keys;
keys.insert ("tester");
keys.insert ("water");
keys.insert ("slow");
keys.insert ("slower");
keys.insert ("test");
keys.insert ("team");
keys.insert ("toast");
const std::set<std::string>::iterator end = keys.end ();
for (std::set<std::string>::iterator it = keys.begin (); it != end; ++it)
tree_add (tree, *it);
std::vector<std::string> *vec = new std::vector<std::string> ();
tree.apply (return_key, static_cast<void *> (vec));
for (size_t i = 0; i < vec->size (); ++i)
TEST_ASSERT_TRUE (keys.count ((*vec)[i]) > 0);
delete vec;
}
void test_print ()
{
zmq::radix_tree tree;
// Adapted from the example on wikipedia.
std::vector<std::string> keys;
keys.push_back ("tester");
keys.push_back ("water");
keys.push_back ("slow");
keys.push_back ("slower");
keys.push_back ("test");
keys.push_back ("team");
keys.push_back ("toast");
for (size_t i = 0; i < keys.size (); ++i)
tree_add (tree, keys[i]);
tree.print ();
}
int main (void)
{
setup_test_environment ();
UNITY_BEGIN ();
RUN_TEST (test_empty);
RUN_TEST (test_add_single_entry);
RUN_TEST (test_add_same_entry_twice);
RUN_TEST (test_rm_when_empty);
RUN_TEST (test_rm_single_entry);
RUN_TEST (test_rm_unique_entry_twice);
RUN_TEST (test_rm_duplicate_entry);
RUN_TEST (test_rm_common_prefix);
RUN_TEST (test_rm_common_prefix_entry);
RUN_TEST (test_rm_null_entry);
RUN_TEST (test_check_empty);
RUN_TEST (test_check_added_entry);
RUN_TEST (test_check_common_prefix);
RUN_TEST (test_check_prefix);
RUN_TEST (test_check_nonexistent_entry);
RUN_TEST (test_check_query_longer_than_entry);
RUN_TEST (test_check_null_entry_added);
RUN_TEST (test_size);
RUN_TEST (test_apply);
RUN_TEST (test_print);
return UNITY_END ();
}