Problem: network initialization and shutdown functions not available for

reuse

Solution: extract into functions defined in ip.hpp

Problem: signaler_t::make_fdpair not reusable

Solution: move make_fdpair to ip.hpp

Problem: epoll worker with no fds cannot be stopped

Solution: use interruptible epoll_pwait call

Problem: insufficient unit tests for poller

Solution: add test cases
This commit is contained in:
Simon Giesecke
2018-02-09 11:03:30 +01:00
parent ecb3b503c3
commit e8e24030ea
9 changed files with 630 additions and 392 deletions

View File

@@ -67,10 +67,6 @@
#include "ip.hpp"
#include "tcp.hpp"
#if defined ZMQ_HAVE_EVENTFD
#include <sys/eventfd.h>
#endif
#if !defined ZMQ_HAVE_WINDOWS
#include <unistd.h>
#include <netinet/tcp.h>
@@ -384,313 +380,3 @@ void zmq::signaler_t::forked ()
make_fdpair (&r, &w);
}
#endif
#if defined ZMQ_HAVE_WINDOWS
static void tune_socket (const SOCKET socket)
{
BOOL tcp_nodelay = 1;
int rc = setsockopt (socket, IPPROTO_TCP, TCP_NODELAY,
(char *) &tcp_nodelay, sizeof tcp_nodelay);
wsa_assert (rc != SOCKET_ERROR);
zmq::tcp_tune_loopback_fast_path (socket);
}
#endif
// Returns -1 if we could not make the socket pair successfully
int zmq::signaler_t::make_fdpair (fd_t *r_, fd_t *w_)
{
#if defined ZMQ_HAVE_EVENTFD
int flags = 0;
#if defined ZMQ_HAVE_EVENTFD_CLOEXEC
// Setting this option result in sane behaviour when exec() functions
// are used. Old sockets are closed and don't block TCP ports, avoid
// leaks, etc.
flags |= EFD_CLOEXEC;
#endif
fd_t fd = eventfd (0, flags);
if (fd == -1) {
errno_assert (errno == ENFILE || errno == EMFILE);
*w_ = *r_ = -1;
return -1;
} else {
*w_ = *r_ = fd;
return 0;
}
#elif defined ZMQ_HAVE_WINDOWS
#if !defined _WIN32_WCE && !defined ZMQ_HAVE_WINDOWS_UWP
// Windows CE does not manage security attributes
SECURITY_DESCRIPTOR sd;
SECURITY_ATTRIBUTES sa;
memset (&sd, 0, sizeof sd);
memset (&sa, 0, sizeof sa);
InitializeSecurityDescriptor (&sd, SECURITY_DESCRIPTOR_REVISION);
SetSecurityDescriptorDacl (&sd, TRUE, 0, FALSE);
sa.nLength = sizeof (SECURITY_ATTRIBUTES);
sa.lpSecurityDescriptor = &sd;
#endif
// This function has to be in a system-wide critical section so that
// two instances of the library don't accidentally create signaler
// crossing the process boundary.
// We'll use named event object to implement the critical section.
// Note that if the event object already exists, the CreateEvent requests
// EVENT_ALL_ACCESS access right. If this fails, we try to open
// the event object asking for SYNCHRONIZE access only.
HANDLE sync = NULL;
// Create critical section only if using fixed signaler port
// Use problematic Event implementation for compatibility if using old port 5905.
// Otherwise use Mutex implementation.
int event_signaler_port = 5905;
if (signaler_port == event_signaler_port) {
#if !defined _WIN32_WCE && !defined ZMQ_HAVE_WINDOWS_UWP
sync =
CreateEventW (&sa, FALSE, TRUE, L"Global\\zmq-signaler-port-sync");
#else
sync =
CreateEventW (NULL, FALSE, TRUE, L"Global\\zmq-signaler-port-sync");
#endif
if (sync == NULL && GetLastError () == ERROR_ACCESS_DENIED)
sync = OpenEventW (SYNCHRONIZE | EVENT_MODIFY_STATE, FALSE,
L"Global\\zmq-signaler-port-sync");
win_assert (sync != NULL);
} else if (signaler_port != 0) {
wchar_t mutex_name[MAX_PATH];
#ifdef __MINGW32__
_snwprintf (mutex_name, MAX_PATH, L"Global\\zmq-signaler-port-%d",
signaler_port);
#else
swprintf (mutex_name, MAX_PATH, L"Global\\zmq-signaler-port-%d",
signaler_port);
#endif
#if !defined _WIN32_WCE && !defined ZMQ_HAVE_WINDOWS_UWP
sync = CreateMutexW (&sa, FALSE, mutex_name);
#else
sync = CreateMutexW (NULL, FALSE, mutex_name);
#endif
if (sync == NULL && GetLastError () == ERROR_ACCESS_DENIED)
sync = OpenMutexW (SYNCHRONIZE, FALSE, mutex_name);
win_assert (sync != NULL);
}
// Windows has no 'socketpair' function. CreatePipe is no good as pipe
// handles cannot be polled on. Here we create the socketpair by hand.
*w_ = INVALID_SOCKET;
*r_ = INVALID_SOCKET;
// Create listening socket.
SOCKET listener;
listener = open_socket (AF_INET, SOCK_STREAM, 0);
wsa_assert (listener != INVALID_SOCKET);
// Set SO_REUSEADDR and TCP_NODELAY on listening socket.
BOOL so_reuseaddr = 1;
int rc = setsockopt (listener, SOL_SOCKET, SO_REUSEADDR,
(char *) &so_reuseaddr, sizeof so_reuseaddr);
wsa_assert (rc != SOCKET_ERROR);
tune_socket (listener);
// Init sockaddr to signaler port.
struct sockaddr_in addr;
memset (&addr, 0, sizeof addr);
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl (INADDR_LOOPBACK);
addr.sin_port = htons (signaler_port);
// Create the writer socket.
*w_ = open_socket (AF_INET, SOCK_STREAM, 0);
wsa_assert (*w_ != INVALID_SOCKET);
// Set TCP_NODELAY on writer socket.
tune_socket (*w_);
if (sync != NULL) {
// Enter the critical section.
DWORD dwrc = WaitForSingleObject (sync, INFINITE);
zmq_assert (dwrc == WAIT_OBJECT_0 || dwrc == WAIT_ABANDONED);
}
// Bind listening socket to signaler port.
rc = bind (listener, (const struct sockaddr *) &addr, sizeof addr);
if (rc != SOCKET_ERROR && signaler_port == 0) {
// Retrieve ephemeral port number
int addrlen = sizeof addr;
rc = getsockname (listener, (struct sockaddr *) &addr, &addrlen);
}
// Listen for incoming connections.
if (rc != SOCKET_ERROR)
rc = listen (listener, 1);
// Connect writer to the listener.
if (rc != SOCKET_ERROR)
rc = connect (*w_, (struct sockaddr *) &addr, sizeof addr);
// Accept connection from writer.
if (rc != SOCKET_ERROR)
*r_ = accept (listener, NULL, NULL);
// Send/receive large chunk to work around TCP slow start
// This code is a workaround for #1608
if (*r_ != INVALID_SOCKET) {
size_t dummy_size =
1024 * 1024; // 1M to overload default receive buffer
unsigned char *dummy = (unsigned char *) malloc (dummy_size);
wsa_assert (dummy);
int still_to_send = (int) dummy_size;
int still_to_recv = (int) dummy_size;
while (still_to_send || still_to_recv) {
int nbytes;
if (still_to_send > 0) {
nbytes =
::send (*w_, (char *) (dummy + dummy_size - still_to_send),
still_to_send, 0);
wsa_assert (nbytes != SOCKET_ERROR);
still_to_send -= nbytes;
}
nbytes = ::recv (*r_, (char *) (dummy + dummy_size - still_to_recv),
still_to_recv, 0);
wsa_assert (nbytes != SOCKET_ERROR);
still_to_recv -= nbytes;
}
free (dummy);
}
// Save errno if error occurred in bind/listen/connect/accept.
int saved_errno = 0;
if (*r_ == INVALID_SOCKET)
saved_errno = WSAGetLastError ();
// We don't need the listening socket anymore. Close it.
rc = closesocket (listener);
wsa_assert (rc != SOCKET_ERROR);
if (sync != NULL) {
// Exit the critical section.
BOOL brc;
if (signaler_port == event_signaler_port)
brc = SetEvent (sync);
else
brc = ReleaseMutex (sync);
win_assert (brc != 0);
// Release the kernel object
brc = CloseHandle (sync);
win_assert (brc != 0);
}
if (*r_ != INVALID_SOCKET) {
#if !defined _WIN32_WCE && !defined ZMQ_HAVE_WINDOWS_UWP
// On Windows, preventing sockets to be inherited by child processes.
BOOL brc = SetHandleInformation ((HANDLE) *r_, HANDLE_FLAG_INHERIT, 0);
win_assert (brc);
#endif
return 0;
} else {
// Cleanup writer if connection failed
if (*w_ != INVALID_SOCKET) {
rc = closesocket (*w_);
wsa_assert (rc != SOCKET_ERROR);
*w_ = INVALID_SOCKET;
}
// Set errno from saved value
errno = wsa_error_to_errno (saved_errno);
return -1;
}
#elif defined ZMQ_HAVE_OPENVMS
// Whilst OpenVMS supports socketpair - it maps to AF_INET only. Further,
// it does not set the socket options TCP_NODELAY and TCP_NODELACK which
// can lead to performance problems.
//
// The bug will be fixed in V5.6 ECO4 and beyond. In the meantime, we'll
// create the socket pair manually.
struct sockaddr_in lcladdr;
memset (&lcladdr, 0, sizeof lcladdr);
lcladdr.sin_family = AF_INET;
lcladdr.sin_addr.s_addr = htonl (INADDR_LOOPBACK);
lcladdr.sin_port = 0;
int listener = open_socket (AF_INET, SOCK_STREAM, 0);
errno_assert (listener != -1);
int on = 1;
int rc = setsockopt (listener, IPPROTO_TCP, TCP_NODELAY, &on, sizeof on);
errno_assert (rc != -1);
rc = setsockopt (listener, IPPROTO_TCP, TCP_NODELACK, &on, sizeof on);
errno_assert (rc != -1);
rc = bind (listener, (struct sockaddr *) &lcladdr, sizeof lcladdr);
errno_assert (rc != -1);
socklen_t lcladdr_len = sizeof lcladdr;
rc = getsockname (listener, (struct sockaddr *) &lcladdr, &lcladdr_len);
errno_assert (rc != -1);
rc = listen (listener, 1);
errno_assert (rc != -1);
*w_ = open_socket (AF_INET, SOCK_STREAM, 0);
errno_assert (*w_ != -1);
rc = setsockopt (*w_, IPPROTO_TCP, TCP_NODELAY, &on, sizeof on);
errno_assert (rc != -1);
rc = setsockopt (*w_, IPPROTO_TCP, TCP_NODELACK, &on, sizeof on);
errno_assert (rc != -1);
rc = connect (*w_, (struct sockaddr *) &lcladdr, sizeof lcladdr);
errno_assert (rc != -1);
*r_ = accept (listener, NULL, NULL);
errno_assert (*r_ != -1);
close (listener);
return 0;
#else
// All other implementations support socketpair()
int sv[2];
int type = SOCK_STREAM;
// Setting this option result in sane behaviour when exec() functions
// are used. Old sockets are closed and don't block TCP ports, avoid
// leaks, etc.
#if defined ZMQ_HAVE_SOCK_CLOEXEC
type |= SOCK_CLOEXEC;
#endif
int rc = socketpair (AF_UNIX, type, 0, sv);
if (rc == -1) {
errno_assert (errno == ENFILE || errno == EMFILE);
*w_ = *r_ = -1;
return -1;
} else {
// If there's no SOCK_CLOEXEC, let's try the second best option. Note that
// race condition can cause socket not to be closed (if fork happens
// between socket creation and this point).
#if !defined ZMQ_HAVE_SOCK_CLOEXEC && defined FD_CLOEXEC
rc = fcntl (sv[0], F_SETFD, FD_CLOEXEC);
errno_assert (rc != -1);
rc = fcntl (sv[1], F_SETFD, FD_CLOEXEC);
errno_assert (rc != -1);
#endif
*w_ = sv[0];
*r_ = sv[1];
return 0;
}
#endif
}