mirror of
https://github.com/zeromq/libzmq.git
synced 2025-10-26 18:42:43 +01:00
tcp_engine renamed to stream engine
The engine was not used exclusively for TCP connections. Rather it was used to handle any socket with SOCK_STREAM semantics. The class was renamed to reflect its true function. Signed-off-by: Martin Sustrik <sustrik@250bpm.com>
This commit is contained in:
374
src/stream_engine.cpp
Normal file
374
src/stream_engine.cpp
Normal file
@@ -0,0 +1,374 @@
|
||||
/*
|
||||
Copyright (c) 2007-2011 iMatix Corporation
|
||||
Copyright (c) 2007-2011 Other contributors as noted in the AUTHORS file
|
||||
|
||||
This file is part of 0MQ.
|
||||
|
||||
0MQ is free software; you can redistribute it and/or modify it under
|
||||
the terms of the GNU Lesser General Public License as published by
|
||||
the Free Software Foundation; either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
0MQ is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include "platform.hpp"
|
||||
#if defined ZMQ_HAVE_WINDOWS
|
||||
#include "windows.hpp"
|
||||
#else
|
||||
#include <unistd.h>
|
||||
#include <sys/socket.h>
|
||||
#include <arpa/inet.h>
|
||||
#include <netinet/tcp.h>
|
||||
#include <netinet/in.h>
|
||||
#include <netdb.h>
|
||||
#include <fcntl.h>
|
||||
#endif
|
||||
|
||||
#include <string.h>
|
||||
#include <new>
|
||||
|
||||
#include "stream_engine.hpp"
|
||||
#include "io_thread.hpp"
|
||||
#include "session.hpp"
|
||||
#include "config.hpp"
|
||||
#include "err.hpp"
|
||||
#include "ip.hpp"
|
||||
|
||||
zmq::stream_engine_t::stream_engine_t (fd_t fd_, const options_t &options_) :
|
||||
s (fd_),
|
||||
inpos (NULL),
|
||||
insize (0),
|
||||
decoder (in_batch_size, options_.maxmsgsize),
|
||||
outpos (NULL),
|
||||
outsize (0),
|
||||
encoder (out_batch_size),
|
||||
session (NULL),
|
||||
leftover_session (NULL),
|
||||
options (options_),
|
||||
plugged (false)
|
||||
{
|
||||
// Get the socket into non-blocking mode.
|
||||
unblock_socket (s);
|
||||
|
||||
// Set the socket buffer limits for the underlying socket.
|
||||
if (options.sndbuf) {
|
||||
int rc = setsockopt (s, SOL_SOCKET, SO_SNDBUF,
|
||||
(char*) &options.sndbuf, sizeof (int));
|
||||
#ifdef ZMQ_HAVE_WINDOWS
|
||||
wsa_assert (rc != SOCKET_ERROR);
|
||||
#else
|
||||
errno_assert (rc == 0);
|
||||
#endif
|
||||
}
|
||||
if (options.rcvbuf) {
|
||||
int rc = setsockopt (s, SOL_SOCKET, SO_RCVBUF,
|
||||
(char*) &options.rcvbuf, sizeof (int));
|
||||
#ifdef ZMQ_HAVE_WINDOWS
|
||||
wsa_assert (rc != SOCKET_ERROR);
|
||||
#else
|
||||
errno_assert (rc == 0);
|
||||
#endif
|
||||
}
|
||||
|
||||
#if defined ZMQ_HAVE_OSX || defined ZMQ_HAVE_FREEBSD
|
||||
// Make sure that SIGPIPE signal is not generated when writing to a
|
||||
// connection that was already closed by the peer.
|
||||
int set = 1;
|
||||
int rc = setsockopt (s, SOL_SOCKET, SO_NOSIGPIPE, &set, sizeof (int));
|
||||
errno_assert (rc == 0);
|
||||
#endif
|
||||
}
|
||||
|
||||
zmq::stream_engine_t::~stream_engine_t ()
|
||||
{
|
||||
zmq_assert (!plugged);
|
||||
|
||||
if (s != retired_fd) {
|
||||
#ifdef ZMQ_HAVE_WINDOWS
|
||||
int rc = closesocket (s);
|
||||
wsa_assert (rc != SOCKET_ERROR);
|
||||
#else
|
||||
int rc = close (s);
|
||||
errno_assert (rc == 0);
|
||||
#endif
|
||||
s = retired_fd;
|
||||
}
|
||||
}
|
||||
|
||||
void zmq::stream_engine_t::plug (io_thread_t *io_thread_, session_t *session_)
|
||||
{
|
||||
zmq_assert (!plugged);
|
||||
plugged = true;
|
||||
leftover_session = NULL;
|
||||
|
||||
// Connect to session object.
|
||||
zmq_assert (!session);
|
||||
zmq_assert (session_);
|
||||
encoder.set_session (session_);
|
||||
decoder.set_session (session_);
|
||||
session = session_;
|
||||
|
||||
// Connect to I/O threads poller object.
|
||||
io_object_t::plug (io_thread_);
|
||||
handle = add_fd (s);
|
||||
set_pollin (handle);
|
||||
set_pollout (handle);
|
||||
|
||||
// Flush all the data that may have been already received downstream.
|
||||
in_event ();
|
||||
}
|
||||
|
||||
void zmq::stream_engine_t::unplug ()
|
||||
{
|
||||
zmq_assert (plugged);
|
||||
plugged = false;
|
||||
|
||||
// Cancel all fd subscriptions.
|
||||
rm_fd (handle);
|
||||
|
||||
// Disconnect from I/O threads poller object.
|
||||
io_object_t::unplug ();
|
||||
|
||||
// Disconnect from session object.
|
||||
encoder.set_session (NULL);
|
||||
decoder.set_session (NULL);
|
||||
leftover_session = session;
|
||||
session = NULL;
|
||||
}
|
||||
|
||||
void zmq::stream_engine_t::terminate ()
|
||||
{
|
||||
unplug ();
|
||||
delete this;
|
||||
}
|
||||
|
||||
void zmq::stream_engine_t::in_event ()
|
||||
{
|
||||
bool disconnection = false;
|
||||
|
||||
// If there's no data to process in the buffer...
|
||||
if (!insize) {
|
||||
|
||||
// Retrieve the buffer and read as much data as possible.
|
||||
// Note that buffer can be arbitrarily large. However, we assume
|
||||
// the underlying TCP layer has fixed buffer size and thus the
|
||||
// number of bytes read will be always limited.
|
||||
decoder.get_buffer (&inpos, &insize);
|
||||
insize = read (inpos, insize);
|
||||
|
||||
// Check whether the peer has closed the connection.
|
||||
if (insize == (size_t) -1) {
|
||||
insize = 0;
|
||||
disconnection = true;
|
||||
}
|
||||
}
|
||||
|
||||
// Push the data to the decoder.
|
||||
size_t processed = decoder.process_buffer (inpos, insize);
|
||||
|
||||
if (unlikely (processed == (size_t) -1)) {
|
||||
disconnection = true;
|
||||
}
|
||||
else {
|
||||
|
||||
// Stop polling for input if we got stuck.
|
||||
if (processed < insize) {
|
||||
|
||||
// This may happen if queue limits are in effect.
|
||||
if (plugged)
|
||||
reset_pollin (handle);
|
||||
}
|
||||
|
||||
// Adjust the buffer.
|
||||
inpos += processed;
|
||||
insize -= processed;
|
||||
}
|
||||
|
||||
// Flush all messages the decoder may have produced.
|
||||
// If IO handler has unplugged engine, flush transient IO handler.
|
||||
if (unlikely (!plugged)) {
|
||||
zmq_assert (leftover_session);
|
||||
leftover_session->flush ();
|
||||
} else {
|
||||
session->flush ();
|
||||
}
|
||||
|
||||
if (session && disconnection)
|
||||
error ();
|
||||
}
|
||||
|
||||
void zmq::stream_engine_t::out_event ()
|
||||
{
|
||||
// If write buffer is empty, try to read new data from the encoder.
|
||||
if (!outsize) {
|
||||
|
||||
outpos = NULL;
|
||||
encoder.get_data (&outpos, &outsize);
|
||||
|
||||
// If IO handler has unplugged engine, flush transient IO handler.
|
||||
if (unlikely (!plugged)) {
|
||||
zmq_assert (leftover_session);
|
||||
leftover_session->flush ();
|
||||
return;
|
||||
}
|
||||
|
||||
// If there is no data to send, stop polling for output.
|
||||
if (outsize == 0) {
|
||||
reset_pollout (handle);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// If there are any data to write in write buffer, write as much as
|
||||
// possible to the socket. Note that amount of data to write can be
|
||||
// arbitratily large. However, we assume that underlying TCP layer has
|
||||
// limited transmission buffer and thus the actual number of bytes
|
||||
// written should be reasonably modest.
|
||||
int nbytes = write (outpos, outsize);
|
||||
|
||||
// Handle problems with the connection.
|
||||
if (nbytes == -1) {
|
||||
error ();
|
||||
return;
|
||||
}
|
||||
|
||||
outpos += nbytes;
|
||||
outsize -= nbytes;
|
||||
}
|
||||
|
||||
void zmq::stream_engine_t::activate_out ()
|
||||
{
|
||||
set_pollout (handle);
|
||||
|
||||
// Speculative write: The assumption is that at the moment new message
|
||||
// was sent by the user the socket is probably available for writing.
|
||||
// Thus we try to write the data to socket avoiding polling for POLLOUT.
|
||||
// Consequently, the latency should be better in request/reply scenarios.
|
||||
out_event ();
|
||||
}
|
||||
|
||||
void zmq::stream_engine_t::activate_in ()
|
||||
{
|
||||
set_pollin (handle);
|
||||
|
||||
// Speculative read.
|
||||
in_event ();
|
||||
}
|
||||
|
||||
void zmq::stream_engine_t::error ()
|
||||
{
|
||||
zmq_assert (session);
|
||||
session->detach ();
|
||||
unplug ();
|
||||
delete this;
|
||||
}
|
||||
|
||||
int zmq::stream_engine_t::write (const void *data_, size_t size_)
|
||||
{
|
||||
#ifdef ZMQ_HAVE_WINDOWS
|
||||
|
||||
int nbytes = send (s, (char*) data_, (int) size_, 0);
|
||||
|
||||
// If not a single byte can be written to the socket in non-blocking mode
|
||||
// we'll get an error (this may happen during the speculative write).
|
||||
if (nbytes == SOCKET_ERROR && WSAGetLastError () == WSAEWOULDBLOCK)
|
||||
return 0;
|
||||
|
||||
// Signalise peer failure.
|
||||
if (nbytes == -1 && (
|
||||
WSAGetLastError () == WSAENETDOWN ||
|
||||
WSAGetLastError () == WSAENETRESET ||
|
||||
WSAGetLastError () == WSAEHOSTUNREACH ||
|
||||
WSAGetLastError () == WSAECONNABORTED ||
|
||||
WSAGetLastError () == WSAETIMEDOUT ||
|
||||
WSAGetLastError () == WSAECONNRESET))
|
||||
return -1;
|
||||
|
||||
wsa_assert (nbytes != SOCKET_ERROR);
|
||||
return (size_t) nbytes;
|
||||
|
||||
#else
|
||||
|
||||
ssize_t nbytes = send (s, data_, size_, 0);
|
||||
|
||||
// Several errors are OK. When speculative write is being done we may not
|
||||
// be able to write a single byte from the socket. Also, SIGSTOP issued
|
||||
// by a debugging tool can result in EINTR error.
|
||||
if (nbytes == -1 && (errno == EAGAIN || errno == EWOULDBLOCK ||
|
||||
errno == EINTR))
|
||||
return 0;
|
||||
|
||||
// Signalise peer failure.
|
||||
if (nbytes == -1 && (errno == ECONNRESET || errno == EPIPE))
|
||||
return -1;
|
||||
|
||||
errno_assert (nbytes != -1);
|
||||
return (size_t) nbytes;
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
int zmq::stream_engine_t::read (void *data_, size_t size_)
|
||||
{
|
||||
#ifdef ZMQ_HAVE_WINDOWS
|
||||
|
||||
int nbytes = recv (s, (char*) data_, (int) size_, 0);
|
||||
|
||||
// If not a single byte can be read from the socket in non-blocking mode
|
||||
// we'll get an error (this may happen during the speculative read).
|
||||
if (nbytes == SOCKET_ERROR && WSAGetLastError () == WSAEWOULDBLOCK)
|
||||
return 0;
|
||||
|
||||
// Connection failure.
|
||||
if (nbytes == -1 && (
|
||||
WSAGetLastError () == WSAENETDOWN ||
|
||||
WSAGetLastError () == WSAENETRESET ||
|
||||
WSAGetLastError () == WSAECONNABORTED ||
|
||||
WSAGetLastError () == WSAETIMEDOUT ||
|
||||
WSAGetLastError () == WSAECONNRESET ||
|
||||
WSAGetLastError () == WSAECONNREFUSED ||
|
||||
WSAGetLastError () == WSAENOTCONN))
|
||||
return -1;
|
||||
|
||||
wsa_assert (nbytes != SOCKET_ERROR);
|
||||
|
||||
// Orderly shutdown by the other peer.
|
||||
if (nbytes == 0)
|
||||
return -1;
|
||||
|
||||
return (size_t) nbytes;
|
||||
|
||||
#else
|
||||
|
||||
ssize_t nbytes = recv (s, data_, size_, 0);
|
||||
|
||||
// Several errors are OK. When speculative read is being done we may not
|
||||
// be able to read a single byte from the socket. Also, SIGSTOP issued
|
||||
// by a debugging tool can result in EINTR error.
|
||||
if (nbytes == -1 && (errno == EAGAIN || errno == EWOULDBLOCK ||
|
||||
errno == EINTR))
|
||||
return 0;
|
||||
|
||||
// Signalise peer failure.
|
||||
if (nbytes == -1 && (errno == ECONNRESET || errno == ECONNREFUSED ||
|
||||
errno == ETIMEDOUT || errno == EHOSTUNREACH))
|
||||
return -1;
|
||||
|
||||
errno_assert (nbytes != -1);
|
||||
|
||||
// Orderly shutdown by the peer.
|
||||
if (nbytes == 0)
|
||||
return -1;
|
||||
|
||||
return (size_t) nbytes;
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user