Introduces bi-directional pipes

So far, there was a pair of unidirectional pipes between a socket
and a session (or an inproc peer). This resulted in complex
problems with half-closed states and tracking which inpipe
corresponds to which outpipe.

This patch doesn't add any functionality in itself, but is
essential for further work on features like subscription
forwarding.

Signed-off-by: Martin Sustrik <sustrik@250bpm.com>
This commit is contained in:
Martin Sustrik
2011-05-22 17:26:53 +02:00
parent 9e6b399256
commit acf0b0e515
34 changed files with 709 additions and 769 deletions

View File

@@ -19,100 +19,123 @@
*/
#include <new>
#include <stddef.h>
#include "pipe.hpp"
#include "likely.hpp"
#include "err.hpp"
zmq::reader_t::reader_t (object_t *parent_, pipe_t *pipe_, int lwm_) :
int zmq::pipepair (class object_t *parents_ [2], class pipe_t* pipes_ [2],
int hwms_ [2], bool delays_ [2])
{
// Creates two pipe objects. These objects are connected by two ypipes,
// each to pass messages in one direction.
pipe_t::upipe_t *upipe1 = new (std::nothrow) pipe_t::upipe_t ();
alloc_assert (upipe1);
pipe_t::upipe_t *upipe2 = new (std::nothrow) pipe_t::upipe_t ();
alloc_assert (upipe2);
pipes_ [0] = new (std::nothrow) pipe_t (parents_ [0], upipe1, upipe2,
hwms_ [1], hwms_ [0], delays_ [0]);
alloc_assert (pipes_ [0]);
pipes_ [1] = new (std::nothrow) pipe_t (parents_ [1], upipe2, upipe1,
hwms_ [0], hwms_ [1], delays_ [1]);
alloc_assert (pipes_ [1]);
pipes_ [0]->set_peer (pipes_ [1]);
pipes_ [1]->set_peer (pipes_ [0]);
return 0;
}
zmq::pipe_t::pipe_t (object_t *parent_, upipe_t *inpipe_, upipe_t *outpipe_,
int inhwm_, int outhwm_, bool delay_) :
object_t (parent_),
active (true),
pipe (pipe_),
writer (NULL),
lwm (lwm_),
inpipe (inpipe_),
outpipe (outpipe_),
in_active (true),
out_active (true),
hwm (outhwm_),
lwm (compute_lwm (inhwm_)),
msgs_read (0),
msgs_written (0),
peers_msgs_read (0),
peer (NULL),
sink (NULL),
terminating (false)
terminating (false),
term_recvd (false),
delimited (false),
delay (delay_)
{
// Note that writer is not set here. Writer will inform reader about its
// address once it is created (via set_writer method).
}
void zmq::reader_t::set_writer (writer_t *writer_)
zmq::pipe_t::~pipe_t ()
{
zmq_assert (!writer);
writer = writer_;
}
zmq::reader_t::~reader_t ()
void zmq::pipe_t::set_peer (pipe_t *peer_)
{
// Pipe as such is owned and deallocated by reader object.
// The point is that reader processes the last step of terminal
// handshaking (term_ack).
zmq_assert (pipe);
// First delete all the unread messages in the pipe. We have to do it by
// hand because msg_t doesn't have automatic destructor.
msg_t msg;
while (pipe->read (&msg)) {
int rc = msg.close ();
errno_assert (rc == 0);
}
delete pipe;
// Peer can be set once only.
zmq_assert (!peer);
peer = peer_;
}
void zmq::reader_t::set_event_sink (i_reader_events *sink_)
void zmq::pipe_t::set_event_sink (i_pipe_events *sink_)
{
// Sink can be set once only.
zmq_assert (!sink);
sink = sink_;
}
bool zmq::reader_t::is_delimiter (msg_t &msg_)
bool zmq::pipe_t::check_read ()
{
return msg_.is_delimiter ();
}
bool zmq::reader_t::check_read ()
{
if (!active)
if (unlikely (!in_active))
return false;
// Check if there's an item in the pipe.
if (!pipe->check_read ()) {
active = false;
if (!inpipe->check_read ()) {
in_active = false;
return false;
}
// If the next item in the pipe is message delimiter,
// initiate its termination.
if (pipe->probe (is_delimiter)) {
// initiate termination process.
if (inpipe->probe (is_delimiter)) {
msg_t msg;
bool ok = pipe->read (&msg);
bool ok = inpipe->read (&msg);
zmq_assert (ok);
if (sink)
sink->delimited (this);
terminate ();
delimited = true;
// If pipe_term was already received but wasn't processed because
// of pending messages, we can ack it now.
if (terminating)
send_pipe_term_ack (peer);
return false;
}
return true;
}
bool zmq::reader_t::read (msg_t *msg_)
bool zmq::pipe_t::read (msg_t *msg_)
{
if (!active)
if (unlikely (!in_active))
return false;
if (!pipe->read (msg_)) {
active = false;
if (!inpipe->read (msg_)) {
in_active = false;
return false;
}
// If delimiter was read, start termination process of the pipe.
if (msg_->is_delimiter ()) {
if (sink)
sink->delimited (this);
terminate ();
delimited = true;
// If pipe_term was already received but wasn't processed because
// of pending messages, we can ack it now.
if (terminating)
send_pipe_term_ack (peer);
return false;
}
@@ -120,175 +143,148 @@ bool zmq::reader_t::read (msg_t *msg_)
msgs_read++;
if (lwm > 0 && msgs_read % lwm == 0)
send_activate_writer (writer, msgs_read);
send_activate_write (peer, msgs_read);
return true;
}
void zmq::reader_t::terminate ()
bool zmq::pipe_t::check_write (msg_t *msg_)
{
// If termination was already started by the peer, do nothing.
if (terminating)
return;
active = false;
terminating = true;
send_pipe_term (writer);
}
void zmq::reader_t::process_activate_reader ()
{
// Forward the event to the sink (either socket or session).
active = true;
sink->activated (this);
}
void zmq::reader_t::process_pipe_term_ack ()
{
// At this point writer may already be deallocated.
// For safety's sake drop the reference to it.
writer = NULL;
// Notify owner about the termination.
zmq_assert (sink);
sink->terminated (this);
// Deallocate resources.
delete this;
}
zmq::writer_t::writer_t (object_t *parent_, pipe_t *pipe_, reader_t *reader_,
int hwm_) :
object_t (parent_),
active (true),
pipe (pipe_),
reader (reader_),
hwm (hwm_),
msgs_read (0),
msgs_written (0),
sink (NULL),
terminating (false)
{
// Inform reader about the writer.
reader->set_writer (this);
}
zmq::writer_t::~writer_t ()
{
}
void zmq::writer_t::set_event_sink (i_writer_events *sink_)
{
zmq_assert (!sink);
sink = sink_;
}
bool zmq::writer_t::check_write (msg_t *msg_)
{
// We've already checked and there's no space free for the new message.
// There's no point in checking once again.
if (unlikely (!active))
if (unlikely (!out_active))
return false;
if (unlikely (pipe_full ())) {
active = false;
bool full = hwm > 0 && msgs_written - peers_msgs_read == uint64_t (hwm);
if (unlikely (full)) {
out_active = false;
return false;
}
return true;
}
bool zmq::writer_t::write (msg_t *msg_)
bool zmq::pipe_t::write (msg_t *msg_)
{
if (unlikely (!check_write (msg_)))
return false;
pipe->write (*msg_, msg_->flags () & msg_t::more);
outpipe->write (*msg_, msg_->flags () & msg_t::more);
if (!(msg_->flags () & msg_t::more))
msgs_written++;
return true;
}
void zmq::writer_t::rollback ()
void zmq::pipe_t::rollback ()
{
// Remove incomplete message from the pipe.
// Remove incomplete message from the outbound pipe.
msg_t msg;
while (pipe->unwrite (&msg)) {
while (outpipe->unwrite (&msg)) {
zmq_assert (msg.flags () & msg_t::more);
int rc = msg.close ();
errno_assert (rc == 0);
}
}
void zmq::writer_t::flush ()
void zmq::pipe_t::flush ()
{
if (!pipe->flush ())
send_activate_reader (reader);
if (!outpipe->flush ())
send_activate_read (peer);
}
void zmq::writer_t::terminate ()
void zmq::pipe_t::process_activate_read ()
{
if (!in_active && !terminating) {
in_active = true;
sink->read_activated (this);
}
}
void zmq::pipe_t::process_activate_write (uint64_t msgs_read_)
{
// Remember the peers's message sequence number.
peers_msgs_read = msgs_read_;
if (!out_active && !terminating) {
out_active = true;
sink->write_activated (this);
}
}
void zmq::pipe_t::process_pipe_term ()
{
term_recvd = true;
// We can proceed with the termination if one of the following is true:
// 1. User asked this side of pipe to terminate already.
// 2. Waiting for pending messages in not required.
// 3. Delimiter was already received.
if (terminating || !delay || delimited) {
terminating = true;
send_pipe_term_ack (peer);
}
}
void zmq::pipe_t::process_pipe_term_ack ()
{
// Notify the user that all the references to the pipe should be dropped.
zmq_assert (sink);
sink->terminated (this);
// If the peer haven't asked for the termination itself, we have to
// ack the ack, so that it can deallocate properly.
if (!term_recvd)
send_pipe_term_ack (peer);
// We'll deallocate the inbound pipe, the peer will deallocate the outbound
// pipe (which is an inbound pipe from its point of view).
// First, delete all the unread messages in the pipe. We have to do it by
// hand because msg_t doesn't have automatic destructor. Then deallocate
// the ypipe itself.
msg_t msg;
while (inpipe->read (&msg)) {
int rc = msg.close ();
errno_assert (rc == 0);
}
delete inpipe;
// Deallocate the pipe object
delete this;
}
void zmq::pipe_t::terminate ()
{
// Prevent double termination.
if (terminating)
return;
terminating = true;
// Mark the pipe as not available for writing.
active = false;
// Stop inbound and outbound flow of messages.
in_active = false;
out_active = false;
// Rollback any unfinished messages.
// Rollback any unfinished outbound messages.
rollback ();
// Push delimiter into the pipe. Trick the compiler to belive that
// the tag is a valid pointer. Note that watermarks are not checked
// thus the delimiter can be written even though the pipe is full.
// Push delimiter into the outbound pipe. Note that watermarks are not
// checked thus the delimiter can be written even though the pipe is full.
msg_t msg;
msg.init_delimiter ();
pipe->write (msg, false);
outpipe->write (msg, false);
flush ();
// Start the termination handshaking.
send_pipe_term (peer);
}
void zmq::writer_t::process_activate_writer (uint64_t msgs_read_)
bool zmq::pipe_t::is_delimiter (msg_t &msg_)
{
// Store the reader's message sequence number.
msgs_read = msgs_read_;
// If the writer was non-active before, let's make it active
// (available for writing messages to).
if (!active && !terminating) {
active = true;
zmq_assert (sink);
sink->activated (this);
}
return msg_.is_delimiter ();
}
void zmq::writer_t::process_pipe_term ()
int zmq::pipe_t::compute_lwm (int hwm_)
{
send_pipe_term_ack (reader);
// The above command allows reader to deallocate itself and the pipe.
// For safety's sake we'll drop the pointers here.
reader = NULL;
pipe = NULL;
// Notify owner about the termination.
zmq_assert (sink);
sink->terminated (this);
// Deallocate the resources.
delete this;
}
bool zmq::writer_t::pipe_full ()
{
return hwm > 0 && msgs_written - msgs_read == uint64_t (hwm);
}
void zmq::create_pipe (object_t *reader_parent_, object_t *writer_parent_,
int hwm_, reader_t **reader_, writer_t **writer_)
{
// First compute the low water mark. Following point should be taken
// Compute the low water mark. Following point should be taken
// into consideration:
//
// 1. LWM has to be less than HWM.
@@ -308,17 +304,8 @@ void zmq::create_pipe (object_t *reader_parent_, object_t *writer_parent_,
// That done, we still we have to account for the cases where
// HWM < max_wm_delta thus driving LWM to negative numbers.
// Let's make LWM 1/2 of HWM in such cases.
int lwm = (hwm_ > max_wm_delta * 2) ?
int result = (hwm_ > max_wm_delta * 2) ?
hwm_ - max_wm_delta : (hwm_ + 1) / 2;
// Create all three objects pipe consists of: the pipe per se, reader and
// writer. The pipe will be handled by reader and writer, its never passed
// to the user. Reader and writer are returned to the user.
pipe_t *pipe = new (std::nothrow) pipe_t ();
alloc_assert (pipe);
*reader_ = new (std::nothrow) reader_t (reader_parent_, pipe, lwm);
alloc_assert (*reader_);
*writer_ = new (std::nothrow) writer_t (writer_parent_, pipe, *reader_,
hwm_);
alloc_assert (*writer_);
return result;
}