Problem: no unittests for mtrie

Solution: made mtrie generic (to remove complex dependency on pipe_t),
and added some unit tests
This commit is contained in:
Simon Giesecke 2018-02-15 13:09:04 +01:00
parent 9fc3692e3f
commit a9712c0bf2
8 changed files with 693 additions and 446 deletions

View File

@ -611,6 +611,8 @@ set (cxx-sources
fd.hpp
fq.hpp
gather.hpp
generic_mtrie.hpp
generic_mtrie_impl.hpp
gssapi_client.hpp
gssapi_mechanism_base.hpp
gssapi_server.hpp

View File

@ -64,6 +64,8 @@ src_libzmq_la_SOURCES = \
src/fq.hpp \
src/gather.cpp \
src/gather.hpp \
src/generic_mtrie.hpp \
src/generic_mtrie_impl.hpp \
src/gssapi_mechanism_base.cpp \
src/gssapi_mechanism_base.hpp \
src/gssapi_client.cpp \
@ -865,7 +867,8 @@ if ENABLE_STATIC
# unit tests - these include individual source files and test the internal functions
test_apps += \
unittests/unittest_poller \
unittests/unittest_ypipe
unittests/unittest_ypipe \
unittests/unittest_mtrie
unittests_unittest_poller_SOURCES = unittests/unittest_poller.cpp
unittests_unittest_poller_CPPFLAGS = -I$(top_srcdir)/src ${UNITY_CPPFLAGS}
@ -878,6 +881,12 @@ unittests_unittest_ypipe_CPPFLAGS = -I$(top_srcdir)/src ${UNITY_CPPFLAGS}
unittests_unittest_ypipe_LDADD = $(top_builddir)/src/.libs/libzmq.a \
${src_libzmq_la_LIBADD} \
${UNITY_LIBS}
unittests_unittest_mtrie_SOURCES = unittests/unittest_mtrie.cpp
unittests_unittest_mtrie_CPPFLAGS = -I$(top_srcdir)/src ${UNITY_CPPFLAGS}
unittests_unittest_mtrie_LDADD = $(top_builddir)/src/.libs/libzmq.a \
${src_libzmq_la_LIBADD} \
${UNITY_LIBS}
endif
check_PROGRAMS = ${test_apps}

104
src/generic_mtrie.hpp Normal file
View File

@ -0,0 +1,104 @@
/*
Copyright (c) 2018 Contributors as noted in the AUTHORS file
This file is part of libzmq, the ZeroMQ core engine in C++.
libzmq is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
As a special exception, the Contributors give you permission to link
this library with independent modules to produce an executable,
regardless of the license terms of these independent modules, and to
copy and distribute the resulting executable under terms of your choice,
provided that you also meet, for each linked independent module, the
terms and conditions of the license of that module. An independent
module is a module which is not derived from or based on this library.
If you modify this library, you must extend this exception to your
version of the library.
libzmq is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __ZMQ_GENERIC_MTRIE_HPP_INCLUDED__
#define __ZMQ_GENERIC_MTRIE_HPP_INCLUDED__
#include <stddef.h>
#include <set>
#include "stdint.hpp"
namespace zmq
{
// Multi-trie. Each node in the trie is a set of pointers to pipes.
template <typename T> class generic_mtrie_t
{
public:
typedef T value_t;
typedef const unsigned char *prefix_t;
generic_mtrie_t ();
~generic_mtrie_t ();
// Add key to the trie. Returns true if it's a new subscription
// rather than a duplicate.
bool add (prefix_t prefix_, size_t size_, value_t *pipe_);
// Remove all subscriptions for a specific peer from the trie.
// The call_on_uniq_ flag controls if the callback is invoked
// when there are no subscriptions left on some topics or on
// every removal.
void
rm (value_t *pipe_,
void (*func_) (const unsigned char *data_, size_t size_, void *arg_),
void *arg_,
bool call_on_uniq_);
// Remove specific subscription from the trie. Return true is it was
// actually removed rather than de-duplicated.
bool rm (prefix_t prefix_, size_t size_, value_t *pipe_);
// Signal all the matching pipes.
void match (prefix_t data_,
size_t size_,
void (*func_) (value_t *pipe_, void *arg_),
void *arg_);
private:
bool add_helper (prefix_t prefix_, size_t size_, value_t *pipe_);
void rm_helper (value_t *pipe_,
unsigned char **buff_,
size_t buffsize_,
size_t maxbuffsize_,
void (*func_) (prefix_t data_, size_t size_, void *arg_),
void *arg_,
bool call_on_uniq_);
bool rm_helper (prefix_t prefix_, size_t size_, value_t *pipe_);
bool is_redundant () const;
typedef std::set<value_t *> pipes_t;
pipes_t *pipes;
unsigned char min;
unsigned short count;
unsigned short live_nodes;
union
{
class generic_mtrie_t<value_t> *node;
class generic_mtrie_t<value_t> **table;
} next;
generic_mtrie_t (const generic_mtrie_t<value_t> &);
const generic_mtrie_t<value_t> &
operator= (const generic_mtrie_t<value_t> &);
};
}
#endif

450
src/generic_mtrie_impl.hpp Normal file
View File

@ -0,0 +1,450 @@
/*
Copyright (c) 2018 Contributors as noted in the AUTHORS file
This file is part of libzmq, the ZeroMQ core engine in C++.
libzmq is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
As a special exception, the Contributors give you permission to link
this library with independent modules to produce an executable,
regardless of the license terms of these independent modules, and to
copy and distribute the resulting executable under terms of your choice,
provided that you also meet, for each linked independent module, the
terms and conditions of the license of that module. An independent
module is a module which is not derived from or based on this library.
If you modify this library, you must extend this exception to your
version of the library.
libzmq is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __ZMQ_GENERIC_MTRIE_IMPL_HPP_INCLUDED__
#define __ZMQ_GENERIC_MTRIE_IMPL_HPP_INCLUDED__
#include <stdlib.h>
#include <new>
#include <algorithm>
#include "err.hpp"
#include "pipe.hpp"
#include "macros.hpp"
#include "generic_mtrie.hpp"
template <typename T>
zmq::generic_mtrie_t<T>::generic_mtrie_t () :
pipes (0),
min (0),
count (0),
live_nodes (0)
{
}
template <typename T> zmq::generic_mtrie_t<T>::~generic_mtrie_t ()
{
LIBZMQ_DELETE (pipes);
if (count == 1) {
zmq_assert (next.node);
LIBZMQ_DELETE (next.node);
} else if (count > 1) {
for (unsigned short i = 0; i != count; ++i) {
LIBZMQ_DELETE (next.table[i]);
}
free (next.table);
}
}
template <typename T>
bool zmq::generic_mtrie_t<T>::add (prefix_t prefix_,
size_t size_,
value_t *pipe_)
{
return add_helper (prefix_, size_, pipe_);
}
template <typename T>
bool zmq::generic_mtrie_t<T>::add_helper (prefix_t prefix_,
size_t size_,
value_t *pipe_)
{
// We are at the node corresponding to the prefix. We are done.
if (!size_) {
bool result = !pipes;
if (!pipes) {
pipes = new (std::nothrow) pipes_t;
alloc_assert (pipes);
}
pipes->insert (pipe_);
return result;
}
unsigned char c = *prefix_;
if (c < min || c >= min + count) {
// The character is out of range of currently handled
// characters. We have to extend the table.
if (!count) {
min = c;
count = 1;
next.node = NULL;
} else if (count == 1) {
unsigned char oldc = min;
generic_mtrie_t *oldp = next.node;
count = (min < c ? c - min : min - c) + 1;
next.table =
(generic_mtrie_t **) malloc (sizeof (generic_mtrie_t *) * count);
alloc_assert (next.table);
for (unsigned short i = 0; i != count; ++i)
next.table[i] = 0;
min = std::min (min, c);
next.table[oldc - min] = oldp;
} else if (min < c) {
// The new character is above the current character range.
unsigned short old_count = count;
count = c - min + 1;
next.table = (generic_mtrie_t **) realloc (
next.table, sizeof (generic_mtrie_t *) * count);
alloc_assert (next.table);
for (unsigned short i = old_count; i != count; i++)
next.table[i] = NULL;
} else {
// The new character is below the current character range.
unsigned short old_count = count;
count = (min + old_count) - c;
next.table = (generic_mtrie_t **) realloc (
next.table, sizeof (generic_mtrie_t *) * count);
alloc_assert (next.table);
memmove (next.table + min - c, next.table,
old_count * sizeof (generic_mtrie_t *));
for (unsigned short i = 0; i != min - c; i++)
next.table[i] = NULL;
min = c;
}
}
// If next node does not exist, create one.
if (count == 1) {
if (!next.node) {
next.node = new (std::nothrow) generic_mtrie_t;
alloc_assert (next.node);
++live_nodes;
}
return next.node->add_helper (prefix_ + 1, size_ - 1, pipe_);
} else {
if (!next.table[c - min]) {
next.table[c - min] = new (std::nothrow) generic_mtrie_t;
alloc_assert (next.table[c - min]);
++live_nodes;
}
return next.table[c - min]->add_helper (prefix_ + 1, size_ - 1, pipe_);
}
}
template <typename T>
void zmq::generic_mtrie_t<T>::rm (value_t *pipe_,
void (*func_) (prefix_t data_,
size_t size_,
void *arg_),
void *arg_,
bool call_on_uniq_)
{
unsigned char *buff = NULL;
rm_helper (pipe_, &buff, 0, 0, func_, arg_, call_on_uniq_);
free (buff);
}
template <typename T>
void zmq::generic_mtrie_t<T>::rm_helper (value_t *pipe_,
unsigned char **buff_,
size_t buffsize_,
size_t maxbuffsize_,
void (*func_) (prefix_t data_,
size_t size_,
void *arg_),
void *arg_,
bool call_on_uniq_)
{
// Remove the subscription from this node.
if (pipes && pipes->erase (pipe_)) {
if (!call_on_uniq_ || pipes->empty ()) {
func_ (*buff_, buffsize_, arg_);
}
if (pipes->empty ()) {
LIBZMQ_DELETE (pipes);
}
}
// Adjust the buffer.
if (buffsize_ >= maxbuffsize_) {
maxbuffsize_ = buffsize_ + 256;
*buff_ = (unsigned char *) realloc (*buff_, maxbuffsize_);
alloc_assert (*buff_);
}
// If there are no subnodes in the trie, return.
if (count == 0)
return;
// If there's one subnode (optimisation).
if (count == 1) {
(*buff_)[buffsize_] = min;
buffsize_++;
next.node->rm_helper (pipe_, buff_, buffsize_, maxbuffsize_, func_,
arg_, call_on_uniq_);
// Prune the node if it was made redundant by the removal
if (next.node->is_redundant ()) {
LIBZMQ_DELETE (next.node);
count = 0;
--live_nodes;
zmq_assert (live_nodes == 0);
}
return;
}
// If there are multiple subnodes.
//
// New min non-null character in the node table after the removal
unsigned char new_min = min + count - 1;
// New max non-null character in the node table after the removal
unsigned char new_max = min;
for (unsigned short c = 0; c != count; c++) {
(*buff_)[buffsize_] = min + c;
if (next.table[c]) {
next.table[c]->rm_helper (pipe_, buff_, buffsize_ + 1, maxbuffsize_,
func_, arg_, call_on_uniq_);
// Prune redundant nodes from the mtrie
if (next.table[c]->is_redundant ()) {
LIBZMQ_DELETE (next.table[c]);
zmq_assert (live_nodes > 0);
--live_nodes;
} else {
// The node is not redundant, so it's a candidate for being
// the new min/max node.
//
// We loop through the node array from left to right, so the
// first non-null, non-redundant node encountered is the new
// minimum index. Conversely, the last non-redundant, non-null
// node encountered is the new maximum index.
if (c + min < new_min)
new_min = c + min;
if (c + min > new_max)
new_max = c + min;
}
}
}
zmq_assert (count > 1);
// Free the node table if it's no longer used.
if (live_nodes == 0) {
free (next.table);
next.table = NULL;
count = 0;
}
// Compact the node table if possible
else if (live_nodes == 1) {
// If there's only one live node in the table we can
// switch to using the more compact single-node
// representation
zmq_assert (new_min == new_max);
zmq_assert (new_min >= min && new_min < min + count);
generic_mtrie_t *node = next.table[new_min - min];
zmq_assert (node);
free (next.table);
next.node = node;
count = 1;
min = new_min;
} else if (new_min > min || new_max < min + count - 1) {
zmq_assert (new_max - new_min + 1 > 1);
generic_mtrie_t **old_table = next.table;
zmq_assert (new_min > min || new_max < min + count - 1);
zmq_assert (new_min >= min);
zmq_assert (new_max <= min + count - 1);
zmq_assert (new_max - new_min + 1 < count);
count = new_max - new_min + 1;
next.table =
(generic_mtrie_t **) malloc (sizeof (generic_mtrie_t *) * count);
alloc_assert (next.table);
memmove (next.table, old_table + (new_min - min),
sizeof (generic_mtrie_t *) * count);
free (old_table);
min = new_min;
}
}
template <typename T>
bool zmq::generic_mtrie_t<T>::rm (prefix_t prefix_,
size_t size_,
value_t *pipe_)
{
return rm_helper (prefix_, size_, pipe_);
}
template <typename T>
bool zmq::generic_mtrie_t<T>::rm_helper (prefix_t prefix_,
size_t size_,
value_t *pipe_)
{
if (!size_) {
if (pipes) {
typename pipes_t::size_type erased = pipes->erase (pipe_);
zmq_assert (erased == 1);
if (pipes->empty ()) {
LIBZMQ_DELETE (pipes);
}
}
return !pipes;
}
unsigned char c = *prefix_;
if (!count || c < min || c >= min + count)
return false;
generic_mtrie_t *next_node = count == 1 ? next.node : next.table[c - min];
if (!next_node)
return false;
bool ret = next_node->rm_helper (prefix_ + 1, size_ - 1, pipe_);
if (next_node->is_redundant ()) {
LIBZMQ_DELETE (next_node);
zmq_assert (count > 0);
if (count == 1) {
next.node = 0;
count = 0;
--live_nodes;
zmq_assert (live_nodes == 0);
} else {
next.table[c - min] = 0;
zmq_assert (live_nodes > 1);
--live_nodes;
// Compact the table if possible
if (live_nodes == 1) {
// If there's only one live node in the table we can
// switch to using the more compact single-node
// representation
unsigned short i;
for (i = 0; i < count; ++i)
if (next.table[i])
break;
zmq_assert (i < count);
min += i;
count = 1;
generic_mtrie_t *oldp = next.table[i];
free (next.table);
next.node = oldp;
} else if (c == min) {
// We can compact the table "from the left"
unsigned short i;
for (i = 1; i < count; ++i)
if (next.table[i])
break;
zmq_assert (i < count);
min += i;
count -= i;
generic_mtrie_t **old_table = next.table;
next.table = (generic_mtrie_t **) malloc (
sizeof (generic_mtrie_t *) * count);
alloc_assert (next.table);
memmove (next.table, old_table + i,
sizeof (generic_mtrie_t *) * count);
free (old_table);
} else if (c == min + count - 1) {
// We can compact the table "from the right"
unsigned short i;
for (i = 1; i < count; ++i)
if (next.table[count - 1 - i])
break;
zmq_assert (i < count);
count -= i;
generic_mtrie_t **old_table = next.table;
next.table = (generic_mtrie_t **) malloc (
sizeof (generic_mtrie_t *) * count);
alloc_assert (next.table);
memmove (next.table, old_table,
sizeof (generic_mtrie_t *) * count);
free (old_table);
}
}
}
return ret;
}
template <typename T>
void zmq::generic_mtrie_t<T>::match (prefix_t data_,
size_t size_,
void (*func_) (value_t *pipe_, void *arg_),
void *arg_)
{
generic_mtrie_t *current = this;
while (true) {
// Signal the pipes attached to this node.
if (current->pipes) {
for (typename pipes_t::iterator it = current->pipes->begin ();
it != current->pipes->end (); ++it)
func_ (*it, arg_);
}
// If we are at the end of the message, there's nothing more to match.
if (!size_)
break;
// If there are no subnodes in the trie, return.
if (current->count == 0)
break;
// If there's one subnode (optimisation).
if (current->count == 1) {
if (data_[0] != current->min)
break;
current = current->next.node;
data_++;
size_--;
continue;
}
// If there are multiple subnodes.
if (data_[0] < current->min
|| data_[0] >= current->min + current->count)
break;
if (!current->next.table[data_[0] - current->min])
break;
current = current->next.table[data_[0] - current->min];
data_++;
size_--;
}
}
template <typename T> bool zmq::generic_mtrie_t<T>::is_redundant () const
{
return !pipes && live_nodes == 0;
}
#endif

View File

@ -28,389 +28,10 @@
*/
#include "precompiled.hpp"
#include <stdlib.h>
#include <new>
#include <algorithm>
#include "err.hpp"
#include "pipe.hpp"
#include "macros.hpp"
#include "mtrie.hpp"
#include "generic_mtrie_impl.hpp"
zmq::mtrie_t::mtrie_t () : pipes (0), min (0), count (0), live_nodes (0)
namespace zmq
{
}
zmq::mtrie_t::~mtrie_t ()
{
LIBZMQ_DELETE (pipes);
if (count == 1) {
zmq_assert (next.node);
LIBZMQ_DELETE (next.node);
} else if (count > 1) {
for (unsigned short i = 0; i != count; ++i) {
LIBZMQ_DELETE (next.table[i]);
}
free (next.table);
}
}
bool zmq::mtrie_t::add (prefix_t prefix_, size_t size_, pipe_t *pipe_)
{
return add_helper (prefix_, size_, pipe_);
}
bool zmq::mtrie_t::add_helper (prefix_t prefix_, size_t size_, pipe_t *pipe_)
{
// We are at the node corresponding to the prefix. We are done.
if (!size_) {
bool result = !pipes;
if (!pipes) {
pipes = new (std::nothrow) pipes_t;
alloc_assert (pipes);
}
pipes->insert (pipe_);
return result;
}
unsigned char c = *prefix_;
if (c < min || c >= min + count) {
// The character is out of range of currently handled
// characters. We have to extend the table.
if (!count) {
min = c;
count = 1;
next.node = NULL;
} else if (count == 1) {
unsigned char oldc = min;
mtrie_t *oldp = next.node;
count = (min < c ? c - min : min - c) + 1;
next.table = (mtrie_t **) malloc (sizeof (mtrie_t *) * count);
alloc_assert (next.table);
for (unsigned short i = 0; i != count; ++i)
next.table[i] = 0;
min = std::min (min, c);
next.table[oldc - min] = oldp;
} else if (min < c) {
// The new character is above the current character range.
unsigned short old_count = count;
count = c - min + 1;
next.table =
(mtrie_t **) realloc (next.table, sizeof (mtrie_t *) * count);
alloc_assert (next.table);
for (unsigned short i = old_count; i != count; i++)
next.table[i] = NULL;
} else {
// The new character is below the current character range.
unsigned short old_count = count;
count = (min + old_count) - c;
next.table =
(mtrie_t **) realloc (next.table, sizeof (mtrie_t *) * count);
alloc_assert (next.table);
memmove (next.table + min - c, next.table,
old_count * sizeof (mtrie_t *));
for (unsigned short i = 0; i != min - c; i++)
next.table[i] = NULL;
min = c;
}
}
// If next node does not exist, create one.
if (count == 1) {
if (!next.node) {
next.node = new (std::nothrow) mtrie_t;
alloc_assert (next.node);
++live_nodes;
}
return next.node->add_helper (prefix_ + 1, size_ - 1, pipe_);
} else {
if (!next.table[c - min]) {
next.table[c - min] = new (std::nothrow) mtrie_t;
alloc_assert (next.table[c - min]);
++live_nodes;
}
return next.table[c - min]->add_helper (prefix_ + 1, size_ - 1, pipe_);
}
}
void zmq::mtrie_t::rm (pipe_t *pipe_,
void (*func_) (prefix_t data_, size_t size_, void *arg_),
void *arg_,
bool call_on_uniq_)
{
unsigned char *buff = NULL;
rm_helper (pipe_, &buff, 0, 0, func_, arg_, call_on_uniq_);
free (buff);
}
void zmq::mtrie_t::rm_helper (pipe_t *pipe_,
unsigned char **buff_,
size_t buffsize_,
size_t maxbuffsize_,
void (*func_) (prefix_t data_,
size_t size_,
void *arg_),
void *arg_,
bool call_on_uniq_)
{
// Remove the subscription from this node.
if (pipes && pipes->erase (pipe_)) {
if (!call_on_uniq_ || pipes->empty ()) {
func_ (*buff_, buffsize_, arg_);
}
if (pipes->empty ()) {
LIBZMQ_DELETE (pipes);
}
}
// Adjust the buffer.
if (buffsize_ >= maxbuffsize_) {
maxbuffsize_ = buffsize_ + 256;
*buff_ = (unsigned char *) realloc (*buff_, maxbuffsize_);
alloc_assert (*buff_);
}
// If there are no subnodes in the trie, return.
if (count == 0)
return;
// If there's one subnode (optimisation).
if (count == 1) {
(*buff_)[buffsize_] = min;
buffsize_++;
next.node->rm_helper (pipe_, buff_, buffsize_, maxbuffsize_, func_,
arg_, call_on_uniq_);
// Prune the node if it was made redundant by the removal
if (next.node->is_redundant ()) {
LIBZMQ_DELETE (next.node);
count = 0;
--live_nodes;
zmq_assert (live_nodes == 0);
}
return;
}
// If there are multiple subnodes.
//
// New min non-null character in the node table after the removal
unsigned char new_min = min + count - 1;
// New max non-null character in the node table after the removal
unsigned char new_max = min;
for (unsigned short c = 0; c != count; c++) {
(*buff_)[buffsize_] = min + c;
if (next.table[c]) {
next.table[c]->rm_helper (pipe_, buff_, buffsize_ + 1, maxbuffsize_,
func_, arg_, call_on_uniq_);
// Prune redundant nodes from the mtrie
if (next.table[c]->is_redundant ()) {
LIBZMQ_DELETE (next.table[c]);
zmq_assert (live_nodes > 0);
--live_nodes;
} else {
// The node is not redundant, so it's a candidate for being
// the new min/max node.
//
// We loop through the node array from left to right, so the
// first non-null, non-redundant node encountered is the new
// minimum index. Conversely, the last non-redundant, non-null
// node encountered is the new maximum index.
if (c + min < new_min)
new_min = c + min;
if (c + min > new_max)
new_max = c + min;
}
}
}
zmq_assert (count > 1);
// Free the node table if it's no longer used.
if (live_nodes == 0) {
free (next.table);
next.table = NULL;
count = 0;
}
// Compact the node table if possible
else if (live_nodes == 1) {
// If there's only one live node in the table we can
// switch to using the more compact single-node
// representation
zmq_assert (new_min == new_max);
zmq_assert (new_min >= min && new_min < min + count);
mtrie_t *node = next.table[new_min - min];
zmq_assert (node);
free (next.table);
next.node = node;
count = 1;
min = new_min;
} else if (new_min > min || new_max < min + count - 1) {
zmq_assert (new_max - new_min + 1 > 1);
mtrie_t **old_table = next.table;
zmq_assert (new_min > min || new_max < min + count - 1);
zmq_assert (new_min >= min);
zmq_assert (new_max <= min + count - 1);
zmq_assert (new_max - new_min + 1 < count);
count = new_max - new_min + 1;
next.table = (mtrie_t **) malloc (sizeof (mtrie_t *) * count);
alloc_assert (next.table);
memmove (next.table, old_table + (new_min - min),
sizeof (mtrie_t *) * count);
free (old_table);
min = new_min;
}
}
bool zmq::mtrie_t::rm (prefix_t prefix_, size_t size_, pipe_t *pipe_)
{
return rm_helper (prefix_, size_, pipe_);
}
bool zmq::mtrie_t::rm_helper (prefix_t prefix_, size_t size_, pipe_t *pipe_)
{
if (!size_) {
if (pipes) {
pipes_t::size_type erased = pipes->erase (pipe_);
zmq_assert (erased == 1);
if (pipes->empty ()) {
LIBZMQ_DELETE (pipes);
}
}
return !pipes;
}
unsigned char c = *prefix_;
if (!count || c < min || c >= min + count)
return false;
mtrie_t *next_node = count == 1 ? next.node : next.table[c - min];
if (!next_node)
return false;
bool ret = next_node->rm_helper (prefix_ + 1, size_ - 1, pipe_);
if (next_node->is_redundant ()) {
LIBZMQ_DELETE (next_node);
zmq_assert (count > 0);
if (count == 1) {
next.node = 0;
count = 0;
--live_nodes;
zmq_assert (live_nodes == 0);
} else {
next.table[c - min] = 0;
zmq_assert (live_nodes > 1);
--live_nodes;
// Compact the table if possible
if (live_nodes == 1) {
// If there's only one live node in the table we can
// switch to using the more compact single-node
// representation
unsigned short i;
for (i = 0; i < count; ++i)
if (next.table[i])
break;
zmq_assert (i < count);
min += i;
count = 1;
mtrie_t *oldp = next.table[i];
free (next.table);
next.node = oldp;
} else if (c == min) {
// We can compact the table "from the left"
unsigned short i;
for (i = 1; i < count; ++i)
if (next.table[i])
break;
zmq_assert (i < count);
min += i;
count -= i;
mtrie_t **old_table = next.table;
next.table = (mtrie_t **) malloc (sizeof (mtrie_t *) * count);
alloc_assert (next.table);
memmove (next.table, old_table + i, sizeof (mtrie_t *) * count);
free (old_table);
} else if (c == min + count - 1) {
// We can compact the table "from the right"
unsigned short i;
for (i = 1; i < count; ++i)
if (next.table[count - 1 - i])
break;
zmq_assert (i < count);
count -= i;
mtrie_t **old_table = next.table;
next.table = (mtrie_t **) malloc (sizeof (mtrie_t *) * count);
alloc_assert (next.table);
memmove (next.table, old_table, sizeof (mtrie_t *) * count);
free (old_table);
}
}
}
return ret;
}
void zmq::mtrie_t::match (prefix_t data_,
size_t size_,
void (*func_) (pipe_t *pipe_, void *arg_),
void *arg_)
{
mtrie_t *current = this;
while (true) {
// Signal the pipes attached to this node.
if (current->pipes) {
for (pipes_t::iterator it = current->pipes->begin ();
it != current->pipes->end (); ++it)
func_ (*it, arg_);
}
// If we are at the end of the message, there's nothing more to match.
if (!size_)
break;
// If there are no subnodes in the trie, return.
if (current->count == 0)
break;
// If there's one subnode (optimisation).
if (current->count == 1) {
if (data_[0] != current->min)
break;
current = current->next.node;
data_++;
size_--;
continue;
}
// If there are multiple subnodes.
if (data_[0] < current->min
|| data_[0] >= current->min + current->count)
break;
if (!current->next.table[data_[0] - current->min])
break;
current = current->next.table[data_[0] - current->min];
data_++;
size_--;
}
}
bool zmq::mtrie_t::is_redundant () const
{
return !pipes && live_nodes == 0;
template class generic_mtrie_t<pipe_t>;
}

View File

@ -30,76 +30,23 @@
#ifndef __ZMQ_MTRIE_HPP_INCLUDED__
#define __ZMQ_MTRIE_HPP_INCLUDED__
#include <stddef.h>
#include <set>
#include "generic_mtrie.hpp"
#include "stdint.hpp"
#if __cplusplus >= 201103L || defined(_MSC_VER)
#define ZMQ_HAS_EXTERN_TEMPLATE 1
#else
#define ZMQ_HAS_EXTERN_TEMPLATE 0
#endif
namespace zmq
{
class pipe_t;
// Multi-trie. Each node in the trie is a set of pointers to pipes.
#if ZMQ_HAS_EXTERN_TEMPLATE
extern template class generic_mtrie_t<pipe_t>;
#endif
class mtrie_t
{
public:
typedef const unsigned char *prefix_t;
mtrie_t ();
~mtrie_t ();
// Add key to the trie. Returns true if it's a new subscription
// rather than a duplicate.
bool add (prefix_t prefix_, size_t size_, zmq::pipe_t *pipe_);
// Remove all subscriptions for a specific peer from the trie.
// The call_on_uniq_ flag controls if the callback is invoked
// when there are no subscriptions left on some topics or on
// every removal.
void
rm (zmq::pipe_t *pipe_,
void (*func_) (const unsigned char *data_, size_t size_, void *arg_),
void *arg_,
bool call_on_uniq_);
// Remove specific subscription from the trie. Return true is it was
// actually removed rather than de-duplicated.
bool rm (prefix_t prefix_, size_t size_, zmq::pipe_t *pipe_);
// Signal all the matching pipes.
void match (prefix_t data_,
size_t size_,
void (*func_) (zmq::pipe_t *pipe_, void *arg_),
void *arg_);
private:
bool add_helper (prefix_t prefix_, size_t size_, zmq::pipe_t *pipe_);
void rm_helper (zmq::pipe_t *pipe_,
unsigned char **buff_,
size_t buffsize_,
size_t maxbuffsize_,
void (*func_) (prefix_t data_, size_t size_, void *arg_),
void *arg_,
bool call_on_uniq_);
bool rm_helper (prefix_t prefix_, size_t size_, zmq::pipe_t *pipe_);
bool is_redundant () const;
typedef std::set<zmq::pipe_t *> pipes_t;
pipes_t *pipes;
unsigned char min;
unsigned short count;
unsigned short live_nodes;
union
{
class mtrie_t *node;
class mtrie_t **table;
} next;
mtrie_t (const mtrie_t &);
const mtrie_t &operator= (const mtrie_t &);
};
typedef generic_mtrie_t<pipe_t> mtrie_t;
}
#endif

View File

@ -4,6 +4,7 @@ cmake_minimum_required(VERSION "2.8.1")
set(unittests
unittest_ypipe
unittest_poller
unittest_mtrie
)
#IF (ENABLE_DRAFTS)

View File

@ -0,0 +1,113 @@
/*
Copyright (c) 2018 Contributors as noted in the AUTHORS file
This file is part of 0MQ.
0MQ is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
0MQ is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "../tests/testutil.hpp"
#if defined(min)
#undef min
#endif
#include <generic_mtrie_impl.hpp>
#include <unity.h>
void setUp ()
{
}
void tearDown ()
{
}
void test_create ()
{
zmq::generic_mtrie_t<int> mtrie;
}
void mtrie_count (int *pipe, void *arg)
{
LIBZMQ_UNUSED (pipe);
int *count = static_cast<int *> (arg);
++*count;
}
void test_check_empty_match_nonempty_data ()
{
zmq::generic_mtrie_t<int> mtrie;
const zmq::generic_mtrie_t<int>::prefix_t test_name =
reinterpret_cast<zmq::generic_mtrie_t<int>::prefix_t> ("foo");
int count = 0;
mtrie.match (test_name, 3, mtrie_count, &count);
TEST_ASSERT_EQUAL_INT (0, count);
}
void test_check_empty_match_empty_data ()
{
zmq::generic_mtrie_t<int> mtrie;
int count = 0;
mtrie.match (NULL, 0, mtrie_count, &count);
TEST_ASSERT_EQUAL_INT (0, count);
}
void test_add_single_entry_match_exact ()
{
int pipe;
zmq::generic_mtrie_t<int> mtrie;
const zmq::generic_mtrie_t<int>::prefix_t test_name =
reinterpret_cast<zmq::generic_mtrie_t<int>::prefix_t> ("foo");
bool res = mtrie.add (test_name, 3, &pipe);
TEST_ASSERT_TRUE (res);
int count = 0;
mtrie.match (test_name, 3, mtrie_count, &count);
TEST_ASSERT_EQUAL_INT (1, count);
}
void test_add_rm_single_entry_match_exact ()
{
int pipe;
zmq::generic_mtrie_t<int> mtrie;
const zmq::generic_mtrie_t<int>::prefix_t test_name =
reinterpret_cast<zmq::generic_mtrie_t<int>::prefix_t> ("foo");
mtrie.add (test_name, 3, &pipe);
bool res = mtrie.rm (test_name, 3, &pipe);
TEST_ASSERT_TRUE (res);
int count = 0;
mtrie.match (test_name, 3, mtrie_count, &count);
TEST_ASSERT_EQUAL_INT (0, count);
}
int main (void)
{
setup_test_environment ();
UNITY_BEGIN ();
RUN_TEST (test_create);
RUN_TEST (test_check_empty_match_nonempty_data);
RUN_TEST (test_check_empty_match_empty_data);
RUN_TEST (test_add_single_entry_match_exact);
RUN_TEST (test_add_rm_single_entry_match_exact);
return UNITY_END ();
}